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Abstract

On Relaxation Systems in Network and Systems Theory

Asher James Hancock

The analysis of nonlinear conductance-based models in biological systems is a fundamental

imperative in neuromorphic engineering. However, recent work has highlighted a discrepancy

between the state-space model and empirical input-output data of a component of one of the

most renowned conductance-based models in biology: the Hodgkin-Huxley model of an excitable

cell [1–4]. In an effort to address this issue, we propose and motivate an input-output framework

for modeling and nonlinear circuit analysis predicated on relaxation systems.

Herein, we provide a primer in linear networks and dissipativity theory to contextualize the

linear relaxation systems as the impedance functions of resistor-inductor and resistor-capacitor

circuits. When viewed as functions on the right half-plane, it is found that relaxation systems

are positive functions, mapping families of cones to their interior.

When viewed as Hankel operators on the domain of finite energy signals, relaxation systems

are positive on families of exponentials, mapping signals decaying in the past to signals decaying in

the future. Furthermore, the Hankel operators of relaxation systems exhibit cyclic monotonicity,

hence are subgradients of a unique convex functional up to an additive constant. It is shown

this functional specifies the energy stored internally by a relaxation system as predicted by

dissipativity theory.

The thesis characterizes numerous input-output properties of linear relaxation systems. We

conclude by arguing that the same properties, namely cone-invariance and cyclic monotonicity,

readily extend to nonlinear systems and provides a foundation for which a nonlinear theory of

relaxation may develop.
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CHAPTER 1

Introduction

1.1 Context and Motivation

Of fundamental concern in linear circuit theory is the network synthesis problem: given an

impedance function Z(s) describing the desired external behavior of a passive one-port network,

how does one construct an internally passive realization consistent with the desired response,

if it exists? A key result in network theory states the driving-point impedance Z(s) of a

linear (lumped) passive one-port network is realizable by a network containing only resistors,

inductors and capacitors if and only if Z(s) is positive-real. Given a positive-real impedance

function, construction of an internally passive network realization is afforded by one of the

various synthesis techniques developed by Brune, Bott, Duffin and others [5–7].

The synthesis problem is well understood for linear circuits. However, for circuits constructed

out of nonlinear elements, there exists no satisfactory answer to the synthesis problem. This

gap in the theory was arguably ignored because of the power of feedback control. Indeed, one of

control’s first successes was in H.S. Black’s use of high gain in negative feedback to force linear

behavior of a nonlinear amplifier. Yet, many modern problems, motivated by the neuroscience

and neuromorphic engineering communities, require a theory of nonlinear synthesis.

For instance, one of the most renowned examples of nonlinear circuit theory applied to

biological systems is the Hodgkin-Huxley (HH) model describing the action potential of an

excitable cell. One component of this conductance-based model relates current through the

potassium ion channel to voltage across the cellular membrane by the set of nonlinear differential

equations

η̇ = α(V )(1− η)− β(V )η, η(0) = 0

I = gKη
4(V − VK)

(1.1)

where η : R → R ∈ [0, 1] denotes the dimensionless gating (state) variable, V : R → R the input

voltage across the cellular membrane and I : R → R the output current density of the potassium

ion channel. Nonlinear functions α(·), β(·) explicitly depend on the input voltage V . Real-valued
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constants VK , gK denote the reversal potential and maximal conductance, respectively [1].

From a series of voltage-clamp experiments and subsequent curve fitting procedures, Hodgkin

and Huxley obtained the following model parameters for Equation 1.1:

α(V ) = 0.01
V + 10

e
V +10
10 − 1

β(V ) = 0.125e
V
80

(1.2)

with VK = 12 and gK = 36, respectively. A reconstruction of the input-output data from the

state-space model of Equation 1.1 with the identified parameters of Equation 1.2 is shown in

Figure 1.1 for different constant voltage-clamp experiments with V ranging from −109 to −6

[mV]. As demonstrated, the input-output mapping from voltage to current suggests a monotone

(non-increasing) admittance operator. Yet, it was recently shown that this proposed state-space

model is not monotone [2–4]. This example demonstrates the prescribed nonlinear relationship

by Hodgkin and Huxley between voltage and current is not realizable by the chosen nonlinear

circuit elements.

Figure 1.1: Reconstruction of experimental output currents from voltage-clamp experiments measured
by Hodgkin and Huxley [1] for varying constant input voltages ranging from −6 [mV] to −109 [mV].

More specifically, the HH model highlights two broader challenges in nonlinear circuit theory:

(i) a characterization of solutions to the nonlinear synthesis problem and (ii) a discrepancy

between nonlinear input-output operators and their corresponding state-space models. Neuro-

morphic engineering promises to develop machines which perform computations akin to how
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biological systems process information. If such systems compute with nonlinear circuit elements,

a nonlinear circuit theory addressing these challenges is needed for neuromorphic engineering to

deliver on its promise.

The empirical results from Hodgkin and Huxley demonstrate a monotonic relationship

between voltage and current which relaxes toward a solution over a sufficiently long time-horizon.

Such dynamics are reminiscent of the relaxation systems, a class of (marginally) stable linear

dynamical systems which derive from monotonic impulse responses. In network theory, they

correspond to the resistor-inductor (RL) and resistor-capacitor (RC) circuits, hence contain only

one type of energy storage element. Since the HH model consists of one capacitor in parallel

with nonlinear conductors (resistors), it is plausible that developing a conductance-based model

like Hodgkin and Huxley’s via a nonlinear relaxation system would rectify the aforementioned

difficulties, thereby partially addressing challenge (i).

Yet, a nonlinear theory of relaxation is absent in the literature. In fact, no agreed upon

definition of what constitutes a nonlinear relaxation system exists. More surprisingly, it appears

a complete theory of linear relaxation systems is lacking and unexplored. For instance, an

interesting remark by Jan Willems in his landmark dissipativity paper [8] states:

Relaxation systems ... have the very interesting property that for such systems one

may always deduce the storage function from input/output experiments, i.e., the

storage function is uniquely determined by the constitutive equations and by the

qualitative assumptions that the system is externally and internally of the relaxation

type.

In general dynamical systems, the state-dependent storage functional from dissipativity theory

describes the energy stored by the system with respect to an input-output-dependent supply

rate, which describes the instantaneous power supplied to the system. Via these two quantities,

dissipativity theory links the external, input-output behavior of a system to its internal, state-

space description [9]. However, since relaxation systems have a storage function determinable

from input-output data alone, one obviates the need for a state-space description entirely,

thereby addressing challenge (ii) above. This remark by Willems is not proven nor discussed

further in [8], and the exploitation of this remarkable property of relaxation systems appears

relatively under-utilized.

The similarities between linear relaxation systems and the nonlinear model developed by

Hodgkin and Huxley suggests that developing a theory of nonlinear relaxation is a promising

route forward in advancing tractable conductance-based models for applications in neuromorphic

engineering. As a first step toward this goal, this thesis seeks to characterize linear relaxation

systems purely in terms of their input-output characteristics. Input-output properties are sought

because the current state-space characterizations of relaxation do not readily generalize to the

nonlinear setting [8, 10]. Moreover, in observance of the discrepancies that exist in the HH

model between the nonlinear state-space representation and its empirical data, we choose to
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focus on properties the data support. Herein, it will be argued that many of the input-output

properties enjoyed by linear relaxation systems readily extend to the nonlinear setting, hence

providing a foundation for which a nonlinear theory may develop.

1.2 Outline

This thesis is organized as follows. Chapter 2 discusses the preliminaries of linear network theory

and positive-real functions. The relevant linear analysis techniques for signals and systems is

then described with particular emphasis on square-integrable functions. Finally, passivity and

dissipativity theory are briefly introduced along with their connections to the relaxation systems.

Chapter 3 introduces Type-1 and Type-2 relaxation systems in the context of passive electrical

networks, corresponding to resistor-inductor and resistor-capacitor circuits, respectively. Two

characterizations are given, one by a Stieltjes-type integral and its rational approximation,

and the other by a cone invariance property in the right half-plane. Furthermore, the convex

structure of the set of relaxation functions within the set of positive-real functions is elucidated.

Chapter 4 proves the remark of Willems, which claims the storage functional of a relaxation

system is determined by input-output data. This necessitates a discussion of Hankel operators

and cyclic monotonicity, where it is demonstrated that linear relaxation systems derive from

convex functionals and hence may be regarded as gradient systems. Finally, Chapter 5 includes a

brief discussion of the results herein and advocates how the results in the linear case can extend

to nonlinear systems. We conclude with a discussion of possible generalizations of relaxation

systems to the nonlinear setting, which is reserved for future work.
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CHAPTER 2

Background

A primer on linear networks, passivity, positive-realness and their relation to the classical

synthesis problem is presented. What follows is a survey of the fundamental mathematical tools

for signals and systems needed throughout this thesis, with particular emphasis on the Lebesgue

and Hardy spaces. Finally, the basics of dissipativity theory is presented to contextualize the

results discussed in Chapter 4.

2.1 Linear Networks and Passivitiy

2.1.1 Preliminaries of Passive Electrical Networks

This section is concerned with one-port networks describing linear passive electrical circuits. The

canonical example of a one-port is shown in Figure 2.1 where voltage v(t) is measured across

the terminals with current i(t) entering one terminal and exiting the other. The driving-point

impedance (sometimes referred to only as ”impedance”) is defined as Z(s) = v(s)/i(s) with

complex frequency variable s = σ + jω where σ, ω are real-valued and j the imaginary unit.

The driving-point admittance is similarly defined as Y (s) = Z−1(s) = i(s)/v(s). By viewing i(s)

as the input (output) and v(s) as the output (input), the impedance (admittance) Z(s) (Y (s))

is representative of a classical single-input, single-output (SISO) transfer function from control

theory. Unless otherwise stated, this thesis will only consider SISO systems.

One-port networks consisting of resistors, inductors and capacitors which satisfy Kirchoff’s

current and voltage laws will be classified as RLC networks. Unless stated otherwise, this

thesis will consider linear, lumped, time-invariant and passive RLC elements (see Figure 2.2).

Linearity arises from constraining the port variables (i, v) by a linear relation. Lumped elements

refer to those whose port variables obey either a memoryless transformation or an ordinary

differential equation. Time-invariance refers to the constancy of the reactance R, inductance

L, and capacitance C respectively. The impedances of the fundamental network elements are
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Figure 2.1: Exemplar one-port circuit network N with driving-point impedance Z(s).

R, sL and 1/(Cs) respectively [11]. Passivity of an electrical component formalizes the notion

that the total energy delivered to the component in a finite time interval is always non-negative.

Therefore, a passive component cannot supply energy to the environment.

Definition 2.1.1 (Passivity [12], Def. 5). Denote (u, y) as the input-output trajectory of

a(n) network or electrical component. Let t0 ∈ R denote an arbitrary time. Then a network

(component) is passive if for all (u, y) and t0, there exists a K ∈ R such that if (û, ŷ) is also an

input-output trajectory of the network (component) and (û(t), ŷ(t)) = (u(t), y(t)) for all t < t0,

then

−
∫ t1

t0

ûT (t)ŷ(t)dt ≤ K (2.1)

for all t1 ≥ t0

Figure 2.2: Fundamental passive circuit elements: resistor, inductor, and capacitor.

For RLC networks, passivity is achieved if and only if R,L,C ≥ 0. Letting the input-output

trajectories (u(t), y(t)) be the driving-point current i(t) and voltage v(t), the one-port network

has the passivity property if the port variables (i, v) satisfy Definition 2.1.1 [11]. If t1 = ∞,

convergence of Equation 2.1 requires that i(t) and v(t) are Lebesgue square integrable. We will

properly discuss Lebesgue spaces in the next section.

2.1.2 RL and RC Impedances

Classical network synthesis arguably began with Foster’s work in characterizing the impedance

functions of passive LC networks [13]. Cauer expanded Foster’s work to RL and RC networks

and provided forms of the allowable impedance functions of each [7, 14].
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Theorem 2.1.1. The driving-point impedance of a passive network which contains only resistors

and inductors, a (RL) network, takes the form

Z1(s) = k1
(s+ p0)(s+ p2) · · · (s+ p2n)

(s+ p1)(s+ p3) · · · (s+ p2n±1)
(2.2)

with k1 ≥ 0, 0 ≤ p0 < p1 < · · · and n ≥ 0. The RL impedances physically realizable are

depicted in Figure 2.3 a), b) through a partial fraction expansion of s−1Z(s) or Y (s).

Note that for a RL network, the impedance may be proper or improper. Alternatively, we

may decompose Equation 2.2 into a sum of first-order terms, which is permissible because each

pole is simple. To do so, we first factor out an s term (if Z1(s) is improper), then perform a

partial fraction expansion.

Z1(s) = A+ A0s+
n∑

i=1

sAi

s+ p2i±1

A,A0, Ai ≥ 0 (2.3)

Theorem 2.1.2. The driving-point impedance of a passive network which contains only resistors

and capacitors, a (RC) network, takes the form

Z2(s) = k2
(s+ p1)(s+ p3) · · · (s+ p2n±1)

(s+ p0)(s+ p2) · · · (s+ p2n)
(2.4)

with k2 ≥ 0, 0 ≤ p0 < p1 < · · · and n ≥ 0. The RC impedances physically realizable are

depicted Figure 2.3 c), d) through a partial fraction expansion of Z(s) or s−1Y (s).

For a RC network, the impedance may be proper or strictly proper. As before, we may

decompose Equation 2.4 into a sum of first-order terms. To do so, we first write Z2(s) as a

constant and a strictly proper rational function. Partial fractions then yields

Z2(s) = A+
n∑

i=0

Ai

s+ p2i
A,A0, Ai ≥ 0 (2.5)

It is emphasized that for RL and RC impedances, pi ̸= pj for i ̸= j. Furthermore, by the

strict monotonic increase of pi, the zeros and poles of both impedances are interlaced: a pole’s

neighbor’s (if they exist) on a pole-zero plot cannot be other poles, and vice-versa for zeros.

As evident from Equations 2.2 and 2.4 above, a simple inversion will map functions from one

representation to the other, assuming the zero function is excluded. This is a manifestation of

the duality principle in network theory and is listed below as a corollary.

Corollary 2.1.1 (Inversion of RL and RC Impedances). Suppose Z(s) ̸= 0. If Z(s) is the

driving point impedance of a RL network, then Z−1(s) has the form of a driving-point impedance

of a RC network, and vice-versa.
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Figure 2.3: Canonical forms for RL and RC circuits.

2.1.3 Positive-Real Analytic Functions

So far, we have characterized the driving point impedances of RL and RC networks from

considerations of the underlying circuit: this is called network analysis. The converse is the

network synthesis question: given a prescribed impedance, construct an internally passive

realization consistent with the desired response, if it exists. Necessary and sufficient conditions

for realizability of a prescribed impedance function were given by Brune and Cauer, later

simplified by Bott and Duffin by removing the need for transformers [5, 6]. We present the

simplified result in the following theorem.

Theorem 2.1.3 (Realizability Theorem). The driving-point impedance Z(s) of a linear passive

one-port network is realizable by a network consisting only of resistors, inductors and capacitors

if and only if Z(s) is positive real.

The key properties of positive-real functions Z(s) are that i) their real parts are nonnegative

for all frequencies and ii) the function’s phase magnitude is less than equal to the input’s phase

magnitude when evaluated in the right half-plane [5, 7], i.e.,

| argZ(s)| ≤ | arg(s)| for all | arg(s)| ≤ π

2
(2.6)

More formally, positive-realness is defined as follows.

Definition 2.1.2 (Positive-Real [11]). A function G(s), not-necessarily rational, is positive-real

if
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1. G(s) is real for s real and positive

2. G(s) is analytic in the right half-plane, i.e., analytic for Re(s) > 0

3. Re(G(s)) ≥ 0 for Re(s) > 0

Remark 2.1.1. Some authors present the third condition of positive-realness as G∗(s)+G(s) ≥ 0

for Re(s) > 0, where ∗ denotes the Hermitian (complex conjugate) transpose [11].

If a positive-real function G(s) is bounded away from the imaginary axis for all s = jω, then

we say it is strictly positive-real.

Definition 2.1.3 (Strictly Positive-Real). A function G(s) is strictly positive-real if G(s− ϵ) is

positive-real for some ϵ > 0.

With respect to the realizability theorem, positive-realness is necessary because, otherwise,

one runs into contradictions. Indeed, suppose that Z(s) were not positive-real. Then there are

two possibilities: either a real-valued current produces a complex-valued voltage, which has

no physical meaning, or the network can generate energy, violating the passivity assumption.

Sufficiency of positive-realness is proved by Brune, where it is shown that one can find a passive

network realization given any positive-real impedance [5].

Analyticity of positive-real functions in the right half-plane (C+) will play a prominent role

later in this work. Loosely speaking, a function analytic in the right half-plane has no poles

in that region, hence is marginally stable from a control-theoretic sense. The first and third

conditions above constrain positive-real functions to have phase lags less than 90 degrees and

enforce the relative difference between number of zeros to number of poles to be at most one.

A useful result from Brune’s work is that if G(s) is positive-real, its inverse G−1(s) is also

positive-real, a manifestation of the inverse relationship between impedance and admittance [5].

Finally, positive-realness requires all poles and zeros to exist in the closed left half-plane (C−).

A proof of this requirement is given in [5] page 19. To demonstrate positive-realness, consider

the following basic example.

Example 2.1 ([11], 2.7.2). Let G(s) = 1/s be the impedance of a capacitor. It is readily

apparent that G(s) is real for s real and positive and is analytic in the right half-plane. If

Re(s) > 0, one has

G∗(s) +G(s) =
1

s∗
+

1

s
=

2Re(s)

|s|2
≥ 0

Thus, G(s) is positive-real.

Thus far, we have discussed properties of positive-real functions. The form such functions

take was given by Cauer, where he represented them by a Stieltjes-like integral [15].

17



Proposition 2.1.1 (Cauer’s Representation). A function G(s) is positive-real if and only if it

permits a representation of the form

G(s) = Cs+

∫ ∞

0

s

s2 + t
dα(t) (2.7)

for Re(s) > 0, where C ≥ 0 and α(t) is a non-decreasing (monotonically increasing) real-valued

function.

Approximating Equation 2.7 by a finite sum of terms results in a rational positive-real

function, thereby yielding a circuit realization consisting of finitely many electrical elements [16].

Definition 2.1.4 (Rational Positive-Real [11, 17]). A rational function G(s),

G(s) =
p(s)

q(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
(2.8)

where |m− n| ≤ 1, is positive-real if

1. G∗(jω) +G(jω) ≥ 0 for all ω ∈ R with jω not a pole of G(s)

2. G(s) is analytic in the right half-plane, i.e., analytic for Re(s) > 0

3. All poles on the extended imaginary axis are simple and have residue which is positive

semidefinite Hermitian. For a pole at jω0, the residue is lims→jω0(s− jω0)G(s) and for a

pole at infinity, the residue is lims→∞(s−1)G(s).

imaginary axis are simple. If jω0 is a pole, then the residue lims→jω0(s − jω0)G(s) is

positive semidefinite Hermitian.

The coefficients of p(s) and q(s) in Equation 2.8 are non-negative for a positive-real function.

Otherwise, Re(G(s)) may be negative for Re(s) > 0. Furthermore, a complex pole must be

accompanied by its complex conjugate pair, if one exists. Otherwise the sum G∗(jω) +G(jω)

may be complex-valued.

In summary, for realizability of a linear passive system, it is necessary and sufficient that

its impedance function be positive-real. Rational approximations of the analytic positive-real

function of Equation 2.7 immediately give realizable circuit representations. Basic classes of

scalar (real-rational) positive-real transfer functions include the following, which represent

various RL, RC and RLC networks, respectively [18]:

1. G(s) = as+ b, a, b ≥ 0

2. G(s) = 1/(s+ a), a ≥ 0

3. G(s) = (s+ c)/(s2 + as+ b), a ≥ c ≥ 0, b ≥ 0
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This thesis will not cover synthesis techniques as it would take us too far afield. Interested

readers are recommended to read the classical works of Brune [5], Bott and Duffin [6], and

Darlington [19]. Comprehensive treatments of passive network synthesis are found in [20] and

[21]; a modern perspective is presented by Morelli and Smith [22].

2.2 Linear Analysis

One of the prevailing techniques in systems theory, pioneered by George Zames, is treatment of

dynamical systems as operators mapping signals to signals [23, 24]. This perspective implicitly

requires the theorist to be conversant in functional analysis. In the following sections, we

provide a refresher on the relevant definitions and theorems of signals and system spaces utilized

throughout this work. The developments herein primarily follow the works of Paganini (Chapter

3) with supplements from Partington (Chapter 1) [25, 26].

2.2.1 Signal Spaces

One of the most important signal spaces used in systems theory are the Lebesgue spaces,

consisting of equivalence classes of functions which agree everywhere except on sets of measure

zero. They naturally generalize the p-norm for finite-dimensional spaces.

Definition 2.2.1 (Lebesgue Spaces). For p ≥ 1, let Lp(−∞,∞) : R → C denote the Lebesgue

vector space of signals u that satisfy ∫ ∞

−∞
|u(t)|p dt <∞ (2.9)

where | · | denotes the modulus of a complex number. Such signals consequently have finite

norm defined as

∥u∥p :=
(∫ ∞

−∞
|u(t)|p dt

) 1
p

(2.10)

When p = ∞, the L∞ space consists of signals u such that

∥u∥∞ := ess sup
t∈R

|u(t)| (2.11)

Throughout this thesis, we primarily focus on Lp(−∞,∞) restricted to either the non-

negative or non-positive axes.

Definition 2.2.2. Denote Lp[0,∞) : R → C as

Lp[0,∞) := {u(t) ∈ Lp(−∞,∞) : u(t) = 0 for t < 0} (2.12)
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Likewise, denote Lp(−∞, 0] : R → C as

Lp(−∞, 0] := {u(t) ∈ Lp(−∞,∞) : u(t) = 0 for t > 0} (2.13)

Alternatively, one could define both subspaces via the projection operator P±, where Lp[0,∞) =

P+ (Lp(−∞,∞)) and Lp(−∞, 0] = P− (Lp(−∞,∞)).

The interpretation is that the subspaces Lp(∞, 0] and Lp[0,∞) have support in the ”past”

and ”future.” We are interested in causal signals, hence will almost always utilize the non-negative

real-axis as our domain. For this reason, we will refer to Lp as Lp(−∞,∞) or Lp[0,∞): the

distinction between the two should be clear based upon the context. Of particular importance

in systems theory is the L2 space because of all the Lp spaces, they are the only Hilbert space

(complete inner product space). Due to ambiguity of which argument is conjugate linear for

inner products over complex vector spaces, we give the definition of the inner product.

Definition 2.2.3 (Inner Product [27]). An inner product on a complex vector space X is a map

⟨·, ·⟩ : X ×X → C (2.14)

such that for all x, y, z ∈ X, λ, µ ∈ C

⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩ (linear in the second argument)

⟨y, x⟩ = ⟨x, y⟩ (Hermitian symmetric)

⟨x, x⟩ ≥ 0 with equality if and only if x = 0 (positive semi-definite)

The first two conditions of an inner product imply ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨x, y⟩. Hence,
in this thesis, the inner product is antilinear or conjugate linear in the first argument [27]. Some

authors define conjugate linearity with respect to the second argument. Now we introduce the

L2 space.

Definition 2.2.4 (L2 Space). With L2(−∞,∞) defined as above, denote the inner product

between u, y ∈ L2 as

⟨u, y⟩2 :=
∫ ∞

−∞
u∗(t)y(t)dt (2.15)

where ∗ denotes the Hermitian conjugate.

We explicitly labeled the space for which the inner product is defined via the subscript.

Throughout this rest of this work, we may neglect this notation when the space will be evident.

It is often advantageous to study problems in the frequency-domain for which computation

is easier or conceptually clearer. In particular, the L2 space is relevant because they are easily

treated in the frequency domain as we explain below.
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Definition 2.2.5. Denote L̂2(jR) as the complex inner product space consisting of functions

û : jR → Cn such that ⟨û, û⟩22 <∞. The inner product between û, ŷ ∈ L̂2(jR) is defined as

⟨û, ŷ⟩2 :=
1

2π

∫ ∞

−∞
û∗(jω)ŷ(jω)dω (2.16)

We will utilize the same notation for the norm and inner product on L̂2 as L2 which should

be clear whether the frequency- or time-domains are utilized. We now introduce the Fourier

and Laplace transforms of L2 signals.

Definition 2.2.6 (Fourier Transform). Let u ∈ L2(−∞,∞) : R → Cn. The Fourier transform

Φ : L2(−∞,∞) → L̂2(jR) of u is defined as

û(jω) = Φu(t) =

∫ ∞

−∞
u(t)e−jωtdω (2.17)

The inverse Fourier transform Φ−1 : L̂2(jR) → L2(−∞,∞) is defined as

u(t) = Φ−1û(jω) =
1

2π

∫ ∞

−∞
û(jω)ejωtdω (2.18)

It can be shown that u(t) = Φ−1 (Φu) (t) for almost every t and û(jω) = Φ (Φ−1û) (jω) for

almost every ω. A key result linking the L2 spaces in the time- and frequency-domains is the

Parseval-Plancherel theorem.

Theorem 2.2.1 (Parseval-Plancherel). If u, y ∈ L2(−∞,∞), then

⟨u, y⟩2 = ⟨Φu,Φy⟩2 (2.19)

and if û, ŷ ∈ L̂2(jR), then
⟨û, ŷ⟩2 = ⟨Φ−1û,Φ−1v̂⟩2 (2.20)

Thus, the Fourier Transform is a unitary operator between L2(−∞,∞) and L̂2(jR), hence
the two spaces isomorphic. In particular, the time- and frequency-domain norms of L2 are

preserved under the Fourier operator. It is also of interest to investigate signals on the imaginary

axis which analytically extend to the right half-plane C+. We now recall the Laplace transform.

Definition 2.2.7 (Laplace Transform). Let u ∈ L2[0,∞) and denote complex variable s = σ+jω.

The Laplace transform Λ : L2[0,∞) → H2(C+) of u is defined as

û(s) := lim
T→∞

∫ T

0

e−stu(t)dt =

∫ ∞

0

e−stu(t)dt (2.21)

when the limit exists and set û(s) = 0 otherwise. The inverse Laplace transform Λ−1 : H2(C+) →
L2[0,∞) is defined as

u(t) = Λ−1û(s) =
1

2π

∫ ∞

0

estû(s)dω (2.22)
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The Laplace integral transformation converges absolutely when Re(s) > 0, which motivates

introduction of the Hardy space H2(C+), and more generally the Hp(C+) spaces.

2.2.1.1 Hardy Spaces on the Right Half-Plane

Definition 2.2.8 (Hardy Spaces [26]). For 1 ≤ p <∞, the Hardy space Hp(C+) on the right

half-plane is defined as the set of analytic functions û : C+ → C such that

∥û∥p =
(
sup
σ>0

∫ ∞

−∞
|û(σ + jω)|p dω

) 1
p

<∞ (2.23)

Definition 2.2.9 (Hardy Space H2(C+)). When p = 2 in Definition 2.2.8, the corresponding

Hardy space H2(C+) is defined as the set of functions û such that

∥û∥2 =
(
sup
σ>0

∫ ∞

−∞
|û(σ + jω) |2dω

) 1
2

<∞ (2.24)

Functions in Hardy space H2(C+) are not a-priori defined on the imaginary axis but have

boundary values ũ(jω) = limσ→0 û(σ + jω) almost everywhere. In fact, a non-trivial result

from functional analysis says that
√
2π∥ũ∥L̂2

= ∥û∥H2 , which allows us to identify ũ and û [26].

Therefore, H2(C+) is regarded as a closed subspace of L̂2(jω) and inherits the inner product

from L̂2(jR):

⟨û, v̂⟩2 =
1

2π

∫ ∞

−∞
ũ∗(jω)ṽ(jω)dω (2.25)

The Laplace transform Λ : L2[0,∞) → H2(C+) gives an isometric isomorphism between the two

spaces.

Theorem 2.2.2 (Paley-Weiner). Suppose u ∈ L2[0,∞). Then Λu ∈ H2(C+). Conversely, if

û ∈ H2(C+), then there exists a u ∈ L2[0,∞) such that Λu = û.

The norm on Hardy space H2(C+) defines a valid inner product, and since H2(C+) is

complete, it is a complex Hilbert space. One may restrict this space to the subspace consisting

only of analytic functions which assume real values for real arguments. This will be advantageous

for a result in Chapter 4 and in defining the rational subsets below.

Definition 2.2.10 (Real-Valued Hardy Space H2(C+)). The set of functions in H2(C+) which

are real for real arguments, denoted by HR
2 (C+) is defined as

HR
2 (C+) := {û ∈ H2(C+) : û(s) ∈ R for s ∈ R} (2.26)

Under this restriction, HR
2 (C+) inherits the structure of a real Hilbert space [28].
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The Hardy space of square integrable functions enjoys many remarkable properties. For

instance, Hardy space H2(C+) is a reproducing kernel Hilbert space (RKHS). Loosely speaking,

a RKHS H is a space in which if two bounded linear functionals f, g ∈ H converge in norm

∥f − g∥, then |f(x)− g(x)| converges point-wise for all x ∈ H [29]. Discussing the intricacies of

RKHS theory would take us too far afield. However, a result which we will make use of later is

the following:

Proposition 2.2.1 (Linear Span of Partial Kernel Evaluations). If H is RKHS over space X,

then H = span(kx : x ∈ X)

The functions kx are called the partial evaluation kernels, where a kernel is a unique positive

definite function K : X ×X → C. For H2(C+), the kernel is called the Szegő kernel:

kλ(·) =
1

2π

1

(·) + λ
(2.27)

For us, this means that any element G ∈ H2(C+) can be written as follows

G(s) =
1

2π

∑
j

αjkλj
(s) =

∑
j

βj

s+ λj
(2.28)

where αj ∈ C. Furthermore, for any number ϵ > 0, there exists an integer M >> 1 such that∣∣∣∣∣G(s)−
M∑
j=1

βj

s+ λj

∣∣∣∣∣ < ϵ (2.29)

By Proposition 2.2.1, the sum in Equation 2.29 will converge to G(s) as M tends to infinity.

The main benefit of utilizing the RKHS structure induced by H2(C+) is it provides a succinct

representation for any element belonging to the space. One interpretation of H2(C+) is that it

consists of signals which can be written as the limit of sums of Laplace-transformed complex

exponentials with distinct poles. The reader should note the sum in Equation 2.28 is unordered

and may consist of countably many terms, a result due to the infinite-dimensionality of the

Hilbert space. In practice, one is often interested in a finite-dimensional representation; for

example, network theorists utilize rational positive-real functions when designing and analyzing

LTI lumped circuit models. Hence, it is of interest to characterize the set of rational functions

in the Hardy space.

Definition 2.2.11 (Rational Hardy Space H2(C+)). The set of rational functions in H2(C+),

denoted as RH2(C+), is defined as

RH2(C+) :=

{
û ∈ H2(C+) : û(s) =

p(s)

q(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

}
(2.30)

where integers m < n and each coefficient ai, bj are complex.
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Clearly, RH2(C+) consists of strictly proper signals with no poles in the closed right half-plane

C+. Likewise, its readily apparent that RH2(C+) ⊂ H2(C+).

A few more important remarks are in order. Firstly, the rationality assumption asserts every

element u ∈ RH2(C+) may be represented by a finite number of terms by the Szegő kernel

in Equation 2.28. Secondly, RH2(C+) is dense in H2(C+), so every element in H2(C+) is the

limit of a sequence of functions in RH2(C+). While RH2(C+) is an inner product space with

the inner product inherited from H2(C+), it is not a Hilbert space because it is not complete.

Hence, an arbitrary limiting sequence of elements in RH2(C+) may converge to a non-rational

element [25].

Before concluding our discussion on Hardy space H2(C+), we introduce one more subset. In

signal processing applications, real-rational functions are utilized because we require real-valued

signals in design and analysis; for example, a complex current î(s) = 1/(s+ (1 + j)) ∈ RH2(C+)

yields a complex-valued time-domain signal of i(t) = e−(1−j)t = e−t (cos(t)− jsin(t)) which is

non-physical. In practice, one would add together combinations of such signals to produce a

real-valued function. Hence, it is pragmatic to work with real-rational functions from the onset,

motivating the following set.

Definition 2.2.12 (Real-Rational Hardy Space H2(C+)). The set of real-rational functions in

H2(C+), denoted as RHR
2 (C+), is defined as

RHR
2 (C+) :=

{
û ∈ H2(C+) : û(s) =

p(s)

q(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

}
(2.31)

where integers m < n and each coefficient ai, bj are real.

The restriction to real coefficients of the polynomials p(s) and q(s) enforces functions in

RHR
2 (C+) to take on real values for real arguments, hence inherits the structure of a real inner

product space [28]. Similar to before, one has that RHR
2 (C+) ⊂ HR

2 (C+).

In comparison to RH2(C+), all poles of a signal û(s) off the negative-real axis necessarily

come in complex-conjugate pairs. It is readily seen that this set is not dense in H2(C+), nor

complete either. However, it is an inner product space [30].

A real-rational function û(s) = p(s)/q(s) can still be factored over the complex numbers by

the Fundamental Theorem of Algebra. This is in line with the Szegő kernel representation of a

rational function in H2(C+). For example,

G(s) =
b1s+ b0

a2s2 + a1s+ a0
=

2s+ (4− 2
√
2)

s2 + 4s+ 6
=

1 + j

s+ (2− j
√
2)

+
1− j

s+ (2 + j
√
2)

In summary, by means of the unitary Fourier transform operator, the time-domain space of

L2(−∞,∞) is isomorphic to L2(jR). By choosing the subspace of signals that are 0 for negative

time, we may identify the natural subspace L2[0,∞) of L2(−∞,∞). The Hardy space H2(C+)
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arises naturally via the Laplace transformation or Fourier transform with analytic extension

to the right half-plane [25]. H2(C+) is a RKHS and enjoys a rich theory in interpolation and

approximation [29]; we will utilize a few of these results for proofs in the subsequent sections.

2.2.2 Operators

Operators map signals to signals and provide a powerful mathematical abstraction of a dynamical

system. Since signals are often represented as finite-dimensional vectors, operators take the

form of matrix-valued functions. One of the first operators one studies is systems theory is the

multiplication operator.

Definition 2.2.13. Denote L̂∞(jR) as the space of matrix valued-functions jR → Cm×n such

that

∥G∥∞ := ess sup
ω∈R

σ (G(jω)) <∞ (2.32)

where σ denotes the singular value.

It turns out that L̂∞(jR) represents the set of bounded linear operators on L̂2(jR).

Theorem 2.2.3. Every function Ĝ ∈ L̂∞(jR) defines a bounded linear operatorMĜ : L̂2(jR) →
L̂2(jR) via the relationship

(MĜû)(jω) = Ĝ(jω)û(ω) (2.33)

and ∥MĜ∥L̂2→L̂2
= ∥Ĝ∥∞.

The operator MĜ is the multiplication operator and Ĝ(jω) is the frequency response. A well-

known result is that every multiplication operator defines a time-invariant operatorG = Φ−1MĜΦ.

In fact, the set of time-invariant operators G : L2(−∞,∞) → L2(−∞,∞) exactly corresponds

to the set of functions in L̂∞(jR).
We are often concerned with causal systems, which informally are systems whose past

input affects future output. In the time-domain, a time-invariant operator G : L2(−∞,∞) →
L2(−∞,∞) is causal if and only if it maps L2[0,∞) to L2[0,∞). By the isometric isomorphism

of the Fourier Transform, it follows that a time-variant operator G = Φ−1MĜΦ is causal if and

only if MĜ maps H2(C+) to H2(C+). To characterize the causal, time-invariant operators in

the frequency domain, we must introduce H∞(C+).

Definition 2.2.14. The H∞(C+) space is a closed subspace in L̂∞(jR) with functions that are

analytic in the open right half-plane and bounded on the imaginary axis. A function Ĝ exists in

H∞(C+) if

∥Ĝ∥∞ := sup
Re(s)>0

σ
(
Ĝ
)
= ess sup

ω∈R
σ
(
Ĝ(jω)

)
<∞ (2.34)

Similar as before, we may restrict ourselves to rational and real-rational matrix-valued

functions in H∞(C+), denoted as RH∞(C+) and RRH∞(C+), respectively. Such matrices have
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elements consisting of proper functions with no poles in the closed right half-plane. We now

present the final theorem for causal LTI operators in the frequency domain: all LTI operators

on L2[0,∞) are represented by H∞(C+) functions.

Theorem 2.2.4. Every Ĝ ∈ H∞(C+) defines a causal, time invariant operator G on L2[0,∞),

where y = Gu is defined as ŷ(jω) = Ĝ(jω)û(jω). Conversely, if the bounded linear operator

G over L2[0,∞) is time-invariant, then there exists Ĝ ∈ H∞(C+) such that y = Gu satisfies

ŷ(jω) = Ĝ(jω)û(jω) for all u ∈ L2[0,∞)

For the remainder of this thesis, we will be loose with notation of G vs. Ĝ for the time and

frequency domains when the distinction is clear. Note that in the single-input-single-output

(SISO) setting, an operator is a scalar-valued function instead of matrix-valued.

2.3 Passivity and Dissipativity

Equipped with the relevant mathematical tools, we now are set to embark on a discussion

of passivity and dissipativity theory in systems and control, both of which utilize the state-

space modeling and analysis framework. This approach adopts ideas from nonlinear mechanics

and variational calculus, leading to well known stability techniques like Lyapunov stability.

Informally, the output of a causal dynamical system depends not only on the present input, but

also past inputs. The states of a system are a set of non-unique variables that represent this

memory of past inputs. Herein, we investigate LTI state-space systems of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.35)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm denotes the input and y(t) ∈ Rp denotes the

output. Matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m describe the dynamics of the

system. In network theory, these constitute Kirchoff’s current and voltage laws. The system is

called stable if A is Hurwitz and minimal if (A,B) and (A,C) are controllable and observable,

respectively [31, 32]. Using complex variable s and the state-space equations, one obtains the

transfer function of the system G(s) = C(sI −A)−1 +D, which is the Laplace transform of the

system’s impulse response g(t) = CeAtB +Dδ(t), where δ(t) is the Dirac delta function.

In contrast, the notions of inputs u(s) and outputs y(s), transfer functions G(s) = y(s)/u(s),

passivity, positive-realness and realizability from network theory were central in developing

the frequency-based, input-output control techniques of Nyquist and Bode: collectively, these

methods form what is normally referred to as classical control. By construction, they are readily

applicable to linear time-invariant (LTI) dynamical systems.

For several years during the 1950’s, control theory was largely divided among these two

disparate approaches. Introduction of passivity by Popov in the Luŕe problem brought the two
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traditions closer together, but it was not until the celebrated Kálmán-Yakubovich-Popov (KYP)

Lemma that the connection was made explicit. For linear systems, the KYP Lemma posits

the equivalence of a positive-real transfer function (passive system) and a quadratic Lyapunov

function of the system’s state, where a Lyapunov function is defined as follows:

Definition 2.3.1 (Lyapunov Function). Let X denote the state-space. A function V : X → R
is called a Lyapunov function in the neighborhood of equilibrium point xeq if

1. V is continuous at xeq.

2. there exists a continuous function α : R+ → R+ with α(σ) > 0 for σ > 0 such that

V (x)− V (xeq) ≥ α(∥x− xeq∥) for all x in a neighborhood of xeq.

3. V is monotone non-increasing along solutions in the neighborhood of xeq.

A Lyapunov function may be interpreted as an energy functional of the system which

decreases along trajectories. Crucially, Lyapunov functions apply to closed dynamical systems.

If one considers open systems, i.e., systems with inputs and outputs, one can generalize the

Lyapunov function to a storage function. From this perspective, passivity of a state-space model

is available.

Definition 2.3.2 (Passivity, State-Space). A state-space model, as in Equation 2.35, is termed

passive if there exists a non-negative storage function V : X → R such that

V (x(T ))− V (x(0)) ≤
∫ T

0

u(t)Ty(t)dt (2.36)

Passivity of a state-space model therefore states that the change of storage is upper-bounded

by the energy supplied. A well known result is that LTI models always admit quadratic storages

of the form V (x) = xTPx where P is a symmetric positive definite matrix.

Generalizing Equation 2.36 further brings one into the realm of Jan Willems’ dissipativity

theory [8, 33]. Introduced in 1972, dissipativity generalizes the passivity property of circuit

theory to dynamical systems which dissipate energy [9]. Standing at the intersection of controls

engineering, physics and systems theory, it relates the external behavior of a system to its

internal structure, and unified results from electrical networks, stability theory, optimal control

and irreversible thermodynamics under a common framework. From a historical perspective, it

is likely that [8] first introduced the linear matrix inequality (LMI) into systems theory [34].

Dissipativity theory relies on the notion of a storage functional and supply rate. Intuitively,

the storage function represents stored energy, whereas the supply rate supplies energy to the

system.

Definition 2.3.3 (Dissipativity). Let X denote the state-space and U ,Y and input-output

spaces, respectively. A dynamical system is called dissipative if, with respect to a state-

dependent, non-negative storage function S : X → R+ and an input-output-dependent supply
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rate w : U × Y → R, the dissipation inequality holds:

S(x(T ))− S(x(0)) ≤
∫ T

0

w(u(t), y(t))dt (2.37)

for all inputs u ∈ U , x0 = x(0) ∈ X and times T ≥ 0.

It is clear that the state-space definition of passivity from Equation 2.36 coincides with the

dissipativity definition if w(u, y) = uTy; this special supply rate is termed the passive supply.

Therefore, a dissipative dynamical system’s storage function represents its internal energy, which

always is a fraction of total energy supplied. In other words, the Lie derivative of the storage is

less than or equal to the supplied energy.

Ṡ(x) ≤ w(u, y) (2.38)

From this perspective, dissipativity is the natural generalization of Lyapunov theory to open

systems since one can show that the storage functional S(x) satisfies the criteria of a valid

Lyapunov function [31, 33, 34].

2.4 Summary

This section was concerned with discussing the preliminaries of linear network theory in the

context of passive systems and positive-real functions. Functions which are analytic or rational

positive-real have many constraints in relation to their pole-zero locations and properties when

evaluated near the imaginary axis. The realizability theorem, providing necessary and sufficient

conditions for network synthesis, demonstrated an equivalence between externally passive

behavior and positive-realness of a network’s impedance function for LTI systems. Basic results

from functional analysis for signals and systems were presented with a focus on reproducing

kernel Hilbert space H2(C+), which is isometrically isomorphic to the Lebesgue space of square

integrable functions L2[0,∞). Finally, classic results of passivity in systems and control theory

were presented to provide context for dissipativity, the generalization of passivity beyond the

passive supply rate and the Lyapunov theory of open systems.

2.5 Discussion

Energy functionals are paramount in both Lyapunov and dissipativity theory, and comparing

the two warrants further discussion. In both frameworks, existence of a functional satisfying

certain decay properties is sufficient to qualitatively describe the behavior of a dynamical system.

While powerful as an analysis technique, finding such a functional is difficult and often relies on
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ad-hoc approaches or expert knowledge. Likewise, uniqueness of the functional is not guaranteed;

indeed, it is well known that the set of valid storages forms a convex set [33].

However, for the relaxation systems, a class of (marginally) stable systems consisting of one

type of energy storage element, a storage function is readily constructed from the system’s

input-output trajectories; indeed, Chaffey et al. demonstrate that for strictly stable relaxation

systems, one may define a storage functional from a system’s past inputs [35].

Definition 2.5.1 (External Storage Functional, Proposition 1, [35]). Consider the state-space

representation of a system represented by Equation 2.35. Given an input u ∈ L2(R,Rm) and

a time t ∈ R, denote by ut the truncation of u to the time-axis (−∞, t]. A external storage

functional is any functional S mapping a truncated signal ut into R+ satisfying

S(ut0)− S(ut1) ≥ −
∫ t1

t0

uT (t)y(t)dt

Ṡ(ut) =
dS

dt
(ut) ≤ uT (t)y(t)

for all t ∈ R, t1 ≥ t0 and input output trajectories (u(t), y(t)) of the system.

The difference between the equations of Definition 2.5.1 and Equations 2.37 and 2.38 is one

of input-dependency versus state-dependency. In recent years, Hughes showed that the external

storage functional is indeed a valid storage function, in the context of dissipativity theory, with

the passive supply rate [12, 36]; hence is passive in accordance with Definition 2.3.2.

Existence of an external storage for relaxation systems has ramifications for the remainder of

this thesis and is discussed in detail in Chapter 4. To contextualize this result, a characterization

of the relaxation systems is first needed, which is the basis of the next chapter.
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CHAPTER 3

Characterizations of Relaxation

Systems

An introduction to LTI relaxation systems of Type-1 and Type-2 is presented, along with a

brief survey of related work. Next, analytic and real-rational descriptions of relaxation systems

are given based upon Cauer’s representation of a positive-real function. The convex structure

of positive-real analytic functions is described with Type-1 and Type-2 relaxation systems as

subsets. Finally, cone-invariance (positivity properties) of the relaxation systems in the right

half-plane are delineated.

3.1 Introduction to Relaxation and Related Work

Relaxation systems characterize marginally stable systems containing only one type of energy

storage element; in electrical circuits, the relaxation systems correspond to RL and RC networks,

hence are positive-real. Originally studied in the context of thermodynamics and viscoelasticity

(see Figure 3.1 for a prototypical relaxation system from the viscoelasticity field), there is

renewed interest in relaxation systems for applications in soft-robotics, memristive devices, and

synthetic biology [37].

One of the first rigorous investigations of relaxation systems was conducted by Meixner

in the context of linear passive systems [38]. Motivated by various relaxation phenomena in

viscoelasticity and acoustics, he sought to characterize which systems will produce a harmonic

response for a give harmonic stimulus. In answering this question, Meixner mathematically

described relaxation systems ”of the first and second kind” via a Laplace-Stieltjes transform

of a nowhere decreasing ”spectral function.” The transform yielded a completely monotonic

function which was utilized to arrive at analytic descriptions (Equation 3.2 and 3.3 of [38]) for

both kinds of relaxation functions. Complete monotonicity is a key characteristic of relaxation

systems and is a recurrent motif of this chapter. We remark that Meixner likened the relaxation
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Figure 3.1: Exemplar relaxation system: the Maxwell–Wiechert model of linear viscoelasticity,
comprised of an arbitrary number of spring-dashpot interconnections under stress σ.

functions of ”the first kind” to RC-networks and ”the second kind” to RL-networks.

Going beyond analytic functions, Zemanian investigated passive networks from an operator

theoretic perspective: instead of viewing R, L and C as positive numbers, he studied them

as positive bounded linear operators acting on a Hilbert space H [39]. He later adapted this

framework to Meixner’s RL and RC relaxation systems, characterizing them by their numerical

ranges. Zemanian also showed that an analytic function G agreed with his definitions of

relaxation only if an inner product of the form ⟨s−1G(s2)h, h⟩ and ⟨sG(s2)h, h⟩ for all h ∈ H
satisfied a positivity property. Somewhat confusingly, he numerically subscripts the RL-networks

with ”1” and the RC-networks with ”2,” opposite that of Meixner.

When Jan Willems introduced the dissipativity framework, Meixner’s relaxation systems

reappeared at the end of the second article [8]. He only addressed the RC-type relaxation

systems and defined them by having a completely monotonic (symmetric) impulse response. It

was shown that relaxation systems are highly structured: they admit state-space realizations

externally and internally symmetric. External symmetry corresponds to the reciprocity property

of electrical networks whereas internal symmetry represents how each energy storage element is

of the same type [40]. A unique property of the relaxation systems, discovered by Willems, is

that their storage is determined via a Hankel operator mapping of the past input; therefore, the

storage is input-dependent, rather than state-dependent.

Recently, Pates et al. utilized the highly-structured state-space realizations of relaxation

systems to solve H∞-type optimal control problems [10]. It was shown that the resultant

controller is sparse and of the relaxation type, thus applicable to large-scale problems like

inductive-networks. Grussler and Sepulchre studied the variation-diminishing properties of
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discrete-time relaxation systems and found that they are Hankel totally positive [41].

Closest to the work presented in this thesis is from Chaffey et. al. [35]. Therein, the authors

demonstrate an equivalence between a stable state-space system being of the relaxation type and

cyclic monotonicity of the corresponding Hankel operator. This equivalence permits the authors

to construct external storage functionals for the system from past input trajectories as detailed

in Definition 2.5.1. Despite the numerous similarities between [35] and this work, a key difference

is that we develop a theory of external storage functionals in the Laplace-domain, rather than

through a state-space description; therefore, our approach is purely input-output. This is

advantageous because state-space methods do not readily extend themselves to the nonlinear

setting, whereas input-output approaches, predicated on properties like cyclic monotonicity

which are well-defined for nonlinear systems, do.

Relative to the prior work aforementioned, this thesis expands the theory of linear relaxation

by seeking a characterization in terms of cone invariance properties (as will be described in

later sections and Chapter 4). Throughout this work, we have designated relaxation systems of

Type-1 for RL networks and Type-2 for RC networks with respect to the impedance function

Z(s) = v(s)/i(s). Indeed, due to the duality of network theory, the network response and its

classification as Type-1 or Type-2 depends upon the driving-point input, and whether one

investigates impedance or admittance. In discussion, we will present Type-2 relaxation systems

first because more results exist for this class of functions in the literature.

Before beginning our discussion, we denote various sets of functions.

P := {set of positive-real functions}

P := {set of rational positive-real functions}

Ri := {set of relaxation functions of Type-i}

Ri := {set of rational relaxation functions of Type-i}

Ris := {set of strictly positive-real relaxation functions of Type-i}

Ris := {set of strictly positive-real rational relaxation functions of Type-i}

It is remarked that a rational positive real function is necessarily real-rational. Restriction

to strictly positive-real functions in sets Ris and Ris eliminate functions with poles on the

imaginary axis, e.g., the differentiator s and integrator 1/s.

3.2 Stieltjes-Type Integrals of Relaxation Systems

3.2.1 Type-2 Relaxation Systems

Type-2 relaxation systems arise as the driving-point impedance of RC networks and as the

driving-point admittance of RL networks. We have already encountered the form these systems
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take on in Equation 2.4. However, we will approach relaxation systems of Type-2 from the

perspective of completely monotonic functions. Meixner connected these two concepts via his

spectral function, whereas Willems via their impulse response behavior [8, 38].

Definition 3.2.1 (Completely Monotonic Function). A function g : [0,∞) → R is completely

monotonic if for all n ∈ N and all t ∈ (0,∞),

(−1)n
dn

dtn
g(t) ≥ 0 (3.1)

Differentiability holds for all t ∈ (0,∞). Continuity holds for all t ∈ [0,∞).

For example, an elementary completely monotonic function is e−pt for p, t ≥ 0. From a

control theoretic point of view, the signal corresponds to a (marginally) stable first-order lag.

The class of completely monotonic functions were originally studied in the context of the Stieltjes

moment problem. It asks: what property should a sequence of elements {gi}∞i=0 have such that

gi =

∫ ∞

0

tidM(t) (3.2)

where M(t) is a non-decreasing function of bounded variation; in measure-theoretic terms, M(t)

is a positive Borel measure [42, 43]. We are interested in a slightly different problem, namely

characterizing functions g(t) rather than sequences {gi}. It is clear the Laplace transform will

play a role; indeed, Equation 3.2 is the discrete analog of the Laplace transform. A change of

variables from i→ s and t→ e−p in Equation 3.2 yields

gs =

∫ ∞

0

e−spd
[
−M(e−p)

]
(3.3)

Complete monotonicity is a well-studied property of functions and Bernstein gave necessary

and sufficient conditions for a function to exhibit complete monotonicity in terms of a Stieltjes

integral.

Theorem 3.2.1 (Bernstein-Widder[43, 44]). A function g : [0,∞) → R is completely monotonic

if and only if

g(t) =

∫ ∞

0

e−tpdM(p) (3.4)

where M(p) is bounded and non-decreasing. The integral converges for 0 ≤ t <∞

For a proof of Bernstein’s theorem, see Widder [43] page 160. Let g(t) be completely

monotonic and denote G(s) = (Λg)(t) by its Laplace transform. To stay consistent with the

literature, we replace the generating function M(p) with α(p). Then from Bernstein’s theorem,
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we have the following results within the region of convergence of the Laplace transform:

g(t) =

∫ ∞

0

e−tpdα(p) t ≥ 0

G(s) =

∫ ∞

0+
e−stg(t)dt Re(s) > 0

Since α(p) is non-decreasing, by Theorem 4d (Widder pg. 335), we may write G(s) as the

Stieltjes integral

G(s) =

∫ ∞

0

dα(t)

s+ t
(3.5)

for any s not belonging to the negative real axis. One should note the resemblance of Equation

3.5 with Cauer’s representation of positive-real functions (G ∈ P) from Equation 2.7. We

include it here again for reference:

P (s) = Cs+

∫ ∞

0

s

s2 + t
dα(t) (3.6)

where C ≥ 0 and α(t) is a non-decreasing real function.

If G(s) is in the form of Equation 3.5, one can show that lims→∞G(s) = 0 and sG(s2) is

positive real [45]. Likewise, G(s) is itself positive-real. This corroborates with the definition

provided by Zemanian [39] and Willems characterization of sG(s2) being lossless, which also

is positive-real [8]. It is clear the condition of lims→∞G(s) = 0 is representative of G(s) being

strictly proper. Conversely, if lims→∞G(s) ̸= 0, then we may write

sG(s2) is positive real ⇐⇒ G(s) = C +

∫ ∞

0

dα(t)

s+ t
C ≥ 0 (3.7)

Definition 3.2.2 (Type-2 Relaxation Functions). The set of Type-2 relaxation functions (R2)

consists of the set of analytic functions G such that sG(s2) is positive-real, i.e., G(s) can be

written as

G(s) = C +

∫ ∞

0

dα(t)

s+ t
(3.8)

for C ≥ 0 and α(t) is a non-decreasing real function.

3.2.1.1 Rational Type-2 Relaxation Systems

Recall that approximating Cauer’s analytic expression by finite sums results in a real-rational

function with an immediate network interpretation [16]. We follow along these lines by presenting

the real-rational Type-2 relaxation systems R2. Seshu et al. presents the rational representation

which we now state [45].
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Theorem 3.2.2 (Rational Relaxation, [45]). If G(s) is rational and is representable as

G(s) = C +

∫ ∞

0

dα(t)

s+ t
(3.9)

with C ≥ 0 and α(t) non-decreasing, then it may be written in the form

G(s) = G0 +
n∑

i=1

Gi

s+ pi
G0, Gi ≥ 0 pi ≥ 0 (3.10)

This equation agrees with Equation 2.5, and expands to obtain the general driving-point

impedance of a RC network from Equation 2.4.

3.2.2 Type-1 Relaxation Systems

Type-1 relaxation systems arise as the driving-point impedance of RL networks and as the

driving-point admittance of RC networks. We have already encountered the form these systems

take on in Equation 2.2. Type-1 relaxation systems are less studied in the literature, presumably

because, in the rational case, they may yield improper transfer functions. For example, the

impedance function of a pure inductor is Z(s) = sL, which is unbounded as s goes to infinity. Yet,

because such functions are positive-real, we may characterize them from Cauer’s representation.

Theorem 3.2.3 (Representation of Type-1 Relaxation Systems). A function G(s) is repre-

sentable by a Stieltjes-like integral of the form

G(s) = Cs+

∫ ∞

0

s

s+ t
dα(t) (3.11)

for all s not on the negative real axis, C ≥ 0 and α(t) non-decreasing if and only if s−1G(s2) is

positive-real.

Proof. Suppose s−1G(s2) is positive-real. Then by Cauer’s Theorem, we may write

s−1G(s2) = Cs+

∫ ∞

0

s

s2 + t
dα(t) Re(s) > 0 (3.12)

G(s2) = Cs2 +

∫ ∞

0

s2

s2 + t
dα(t) Re(s) > 0 (3.13)

=⇒ G(s) = Cs+

∫ ∞

0

s

s+ t
dα(t) Re(s2) > 0 (3.14)

and all s not on the negative-real axis, C ≥ 0 and α(t) non-decreasing. Conversely, suppose the

integral in Equation 3.11 converges. Then one may follow the above steps in reverse to arrive at

s−1G(s2) = Cs+

∫ ∞

0

s

s2 + t
dα(t) (3.15)
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thereby demonstrating that G(s) can be written as in Equation 3.11.

The above result corroborates with Meixner’s definition of relaxation for RL networks, but

without use of a ”spectral function” [38].

Corollary 3.2.1. If s−1G(s2) is positive-real, then G(s) is positive-real.

This follows immediately from Equation 3.14. We now may define Type-1 relaxation systems.

Definition 3.2.3. The set of Type-1 relaxation functions R1 consists of the set of functions G

such that s−1G(s2) is positive-real, i.e., G(s) can be written as

G(s) = Cs+

∫ ∞

0

s

s+ t
dα(t) (3.16)

for C ≥ 0 and α(t) is a non-decreasing real function.

3.2.2.1 Rational Type-1 Relaxation Systems

Again, let us restrict ourselves to the rational case, i.e., G(s) ∈ R1. By approximating Equation

3.16, we may write an arbitrary real-rational Type-1 relaxation system as

G(s) = G0s+
n∑

i=1

sGi

s+ pi
G0, Gi ≥ 0 pi ≥ 0 (3.17)

This equation agrees with Equation 2.3, and expands to obtain the general driving-point

impedance of a RC network from Equation 2.2. See Figure 3.2 for a comparison of the rational

impedance functions Z(s) between prototypical relaxation systems of Type-1 and Type-2.

Figure 3.2: Prototypical impedances Z(s) for relaxation systems of both types.

It is of interest to compare the impulse responses of two prototypical relaxation systems.

Setting G1(s) = s/(s + 1) ∈ R1 and G2(s) = 1/(s + 1) ∈ R2, their impulse responses are

shown in Figure 3.3. Note the positive complete monotonic behavior of g2(t) and the negative

complete monotonic behavior of g1(t): these are telltale signs of relaxation systems because their

long-term behavior ”relaxes” toward a steady-state, hence the namesake. We recall Corollary
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2.1.1, which states that so long as the zero-function is excluded, inversion of Type-1 will give a

Type-2 relaxation function and vice-versa.

Figure 3.3: Comparison of prototypical relaxation systems impulse responses of Type-1, G1(s) =
s/(s+ 1) and Type-2, G2(s) = 1/(s+ 1). Type-1 systems always maintain a Dirac-delta δ(t) function.

3.3 Convex Structure and Cone-Invariance of Relaxation

Systems

Brune’s work on network synthesis provided a near complete characterization of the class of

positive-real functions. Notably, Brune demonstrated that the class of positive-real functions

P is closed under addition and inversion [5]. Specifically, a linear combination of positive-real

functions with non-negative coefficients will yield another positive-real function. Mathematically,

these requirements give rise to a convex invertible cone [46], which we now describe.

3.3.1 Convex (Invertible) Cones of Positive-Real Functions

Definition 3.3.1 (Cone). Let C denote a set. Then C is a cone if for all x ∈ C and θ ∈ R+,

θx ∈ C (3.18)

37



Definition 3.3.2 (Convex Cone). Let C denote a set. Then C is a convex cone is for all

x1, x2 ∈ C and θ1, θ2 ∈ R+,

θ1x1 + θ2x2 ∈ C (3.19)

Definition 3.3.3 (Convex Invertible Cone). Let C denote a set. Then C is a convex invertible

cone if for all x1, x2 ∈ C and θ1, θ2 ∈ R+,

θ1x1 + θ2x2 ∈ C

(θ1x1 + θ2x2)
−1 ∈ C

when the inverse is well-defined.

It is often of interest to characterize functions and operators which map cones into their

interior: such mappings are called positive.

Definition 3.3.4 (Positive and Strictly Positive Operations [47, 48]). Let C be a cone and G a

bounded linear operator. Suppose G is non-trivial (not the zero-operator).

We call G positive if for all x ∈ C, Gx ∈ C, i.e., G leaves the cone invariant.

We call G strictly positive if for all x ∈ C, Gx ∈ int(C) ⊆ C, i.e., G maps to the interior.

We shall use this notion of positivity below. Now, we state the result alluded to in the

beginning of this section.

Proposition 3.3.1 ([46]). The sets of (rational) positive-real functions P and P are convex

invertible cones. Moreover, P ⊂ P .

The convex invertibility property of the set of positive-real functions has a physical inter-

pretation: positive scalings, inversion, addition and closure correspond to transformer ratios,

impedance/admittance duality, series/parallel interconnections of impedances/admittances and

the passivity theorem (passive interconnections are passive).

The sets of relaxation systems Ri, Ri are subsets of P and P respectively. As expected,

they also enjoy convex structural properties.

Proposition 3.3.2. The sets Ri, Ri for i ∈ {1, 2} are convex cones, but are not invertible.

Proof. We prove the result for Type-2 relaxation systems, as a near identical proof follows

for Type-1. Let G1(s), G2(s) ∈ R2. Let θ1, θ2 ≥ 0. Then using the analytic expression from
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Equation 3.8, we have

θ1G1(s) + θ2G2(s) = θ1

(
C1 +

∫ ∞

0

dα1(t)

s+ t

)
+ θ2

(
C2 +

∫ ∞

0

dα2(t)

s+ t

)
= (θ1C1 + θ2C2) +

(∫ ∞

0

d (θ1α1(t)) + d (θ2α2(t))

s+ t

)
= C +

∫ ∞

0

dα(t)

s+ t

= G(s)

where the second linear follows from linearity of the Stieltjes integral. Clearly, a positive scaling

by θi will not change the slope of the monotonically increasing αi(t). Likewise, α(t) = α1(t)+α2(t)

is nowhere decreasing because monotonicity is preserved under addition. Since C ≥ 0 and

the second term converges (by linearity of Stieltjes integral), we have that G(s) is a Type-2

relaxation function. Since G1(s), G2(s) and θ1, θ2 were arbitrary, R2 is a convex cone.

To show the set is not a convex invertible cone, we proceed by counter example. Let H(s) =

1/(s) ∈ R2 ⊂ R2. It is evident that H
−1(s) = s /∈ R2, hence is not an element of R2.

The counter example in the above proposition again highlights a signature qualitative

property of relaxation systems: only one type of energy storage element is allowed. Alternatively,

mixing Type-1 and Type-2 may generate a function whose impulse response is not monotonic.

3.3.2 Cone-Invariance Properties in the Right Half-Plane

The domain and range of positive-real functions is the closed right half-plane, i.e., if G is a

positive-real function, then G : C+ → C+. Recall that all positive-real functions have the

following property:

| argG(s)| ≤ | arg(s)| for all | arg(s)| ≤ π

2
(3.20)

This equation specifies a family of convex cones in the right half-plane, parameterized by s,

consisting of elements within the phase bounds of s and its complex conjugate (see Figure 3.4).

We define a cone in this family by, Θs, as follows.

Θs =
{
z ∈ C+ : | arg z| ≤ | arg s|

}
(3.21)

For an element z ∈ Θs in this cone, G(z) is guaranteed to exist on the boundary or interior

when G is positive real; hence, if G(s) is positive-real, then G is positive on Θs in the sense

of Definition 3.3.4. Because relaxation systems are positive-real, they also inherit this phase

diminishing, positivity property. An additional, unique feature of relaxation systems is one can

specify where in Θs a complex number z ∈ Θs will map to (see Figures 3.5 and 3.6. We present
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Figure 3.4: Illustration of convex cone Θs for s = 1 + j.

this result in the next theorem for the rational case.

Theorem 3.3.1. Fix a ray s = σ + jω ∈ C+ and let G be a rational relaxation system. Define

the following (convex) cone parameterized by s in the right half-plane:

Θ+
s =

z ∈ C+ : 0 ≤ arg z ≤ arg s if Im(s) ≥ 0

z ∈ C+ : arg s ≤ arg z ≤ 0 if Im(s) ≤ 0
(3.22)

If G is a rational Type-1 relaxation system (G ∈ R1), then G maps Θ+
s to Θ+

s . If G is a rational

Type-2 relaxation system (G ∈ R2), then G maps Θ+
s to Θ+

s , where s = σ − jω is the complex

conjugate of s.

Remark 3.3.1. Clearly, Θs = Θ+
s ∪Θ+

s .

Proof. We present the proof for Type-1 relaxation systems since the proof for Type-2 follows

analogously.

Suppose G ∈ R1 ⊂ P . By definition of a positive-real function,

|argG(s)| ≤ |arg s| for |arg s| ≤ π/2 (3.23)

⇐⇒ −|arg s| ≤ argG(s) ≤ |arg s| for − π/2 ≤ arg s ≤ π/2 (3.24)

Fix C+ ∋ s = σ + jω with ω ≥ 0. Hence, arg(s) ≥ 0 because Im(s) ≥ 0. From Equation 3.24,
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it suffices to show that argG(s) ≥ 0. For real-rational Type-1 impedances, there are two cases

to consider: G(s) is improper and G(s) proper.

Improper: the general form of a Type-1 relaxation impedance is

G(s) = k
(s+ p0)(s+ p2) · · · (s+ p2n)

(s+ p1)(s+ p3) · · · (s+ p2n−1)
(3.25)

with k ≥ 0, 0 ≤ p0 < p1 < · · · and n ≥ 0. Without loss of generality, we may assume k = 1.

Fix n ≥ 0. Since s ∈ C+, the argument of G(s) is

argG(s) =
n∑

i=0

arg(s+ p2i)−
n∑

i=1

arg(s+ p2i−1) (3.26)

=
n∑

i=0

tan−1

(
ω

σ + p2i

)
−

n∑
i=1

tan−1

(
ω

σ + p2i−1

)
(3.27)

To show argG(s) ≥ 0, we proceed by contradiction. Suppose argG(s) < 0. Then

n∑
i=1

tan−1

(
ω

σ + p2i−1

)
>

n∑
i=0

tan−1

(
ω

σ + p2i

)
> 0 (3.28)

=⇒
n−1∑
i=0

tan−1

(
ω(p2i − p2i+1)

(σ + p2i+1)(σ + p2i) + ω2

)
> tan−1

(
ω

σ + p2n

)
> 0 (3.29)

where the second inequality follows from the arctangent difference formula: tan−1(a)−tan−1(b) =

tan−1((a− b)/(1 + ab)). Since p2i < p2i+1, the left hand-side of Equation 3.29 is a summation of

negative terms, hence negative. This contradicts the right-hand side being positive.

Proper: If G(s) is proper, the proof is the same except that the right hand-side of Equation

3.29 is now 0, still yielding a contradiction.

We remark that Theorem 3.3.1 is a necessary but not sufficient characterization of relaxation

systems. For example, the positive-real function Z(s) = (s+2)/(s+1)2 = 1/(s+1)+ 1/(s+1)2

maps Θs to Θs but is not a Type-2 relaxation system due to the repeated-pole (see Figure

3.7). Alternatively, the impulse response of this positive-real function is monotonic, but not

completely monotonic. Restricting to the strictly positive-real rational relaxation systems, one

can show that a function G(s) ∈ Ris is strictly positive on Θs.

Theorem 3.3.2. Fix a ray s = σ + jω ∈ C+. Suppose G(s) is a strictly positive-real rational

relaxation system, i.e., G ∈ Ris with i = {1, 2}. Then G(s) is strictly positive on Θs.

Proof. Without loss of generality, fix C+ ∋ s = σ + jω with ω > 0. Note that by enforcing

ω > 0, we avoid the trivial cone in which Θs = R+; in this scenario, the interior int(Θs) coincides

with Θs. We present the proof for both types of relaxation systems.
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Figure 3.5: Illustration of Θs and Θs in a prototypical Type-1 relaxation system for G(s) evaluated
along the ray defined by = 1 + 1j.

Type-1: From Theorem 3.3.1, G maps Θ+
s to Θ+

s and 0 ≤ argG(s). Hence, to show that G

maps to the interior of Θs, it suffices to show that argG(s) < arg s. We proceed by contradiction.

Suppose argG(s) ≥ arg s. Then there are two cases.

Case 1, argG(s) > arg s: if this were true, it contradicts the assumption that G(s) is positive-

real.

Case 2, argG(s) = arg s: If this were true, then G(s) = λs for λ > 0, contradicting the fact

that G is strictly positive-real.

Type-2: From Theorem 3.3.1, G maps Θ+
s to Θ+

s and argG(s) ≤ 0. Hence, to show that G

maps to the interior of Θs, it suffices to show that argG(s) < arg s. We similarly proceed by

contradiction. Suppose argG(s) ≥ arg s. Then there are two cases.

Case 1, argG(s) > arg s: if this were true, then | argG(s)| > | arg s|, contradicting the assump-

tion that G(s) is positive-real.

Case 2, argG(s) = arg s: write s in polar form as s = |rs|ejϕ where |rs|, ϕ > 0. Then arg s = ϕ.

Since 1/s = (1/|rs|)e−jϕ, one has that arg 1/s = arg s. Therefore

argG(s) = arg s ⇐⇒ argG(s) = arg 1/s

⇐⇒ G(s) = λ/s λ > 0
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Figure 3.6: Illustration of Θs and Θs in a prototypical Type-2 relaxation system for for G(s) evaluated
along the ray defined by = 1 + 1j.

contradicting the fact that G is strictly positive-real.

Corollary 3.3.1. Let s ∈ Θ+
s and suppose G is strictly positive-real. If G is a rational Type-1

relaxation system (G ∈ R1s), then G maps from Θ+
s to the interior of Θ+

s . If G is a rational

Type-2 relaxation system (G ∈ R2s), then G maps from Θ+
s to the interior of Θ+

s .

Corollary 3.3.2. Let s = s1 ∈ Θ+
s and suppose G ∈ Ris for i = {1, 2}. Define sk+1 as

sk+1 = G(sk) (3.30)

for k ∈ N. Then as k → ∞, sk → R+.

Proof. This is a simple application of the Banach fixed point theorem.

3.4 Discussion and Summary

This section was concerned with giving analytical and rational descriptions of the relaxation

systems, which are subsets of the class of positive-real functions. Type-1 and Type-2 relaxation

systems correspond to the driving-point impedances of RL and RC networks, respectively, and

the duality of circuit theory allows one to convert between the two types via inversion. Assuming

properness, both Type-1 and Type-2 systems derive from monotonic impulse responses, with
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Figure 3.7: Illustration of a positive-real function G(s) which maps Θs to Θs for some points yet is
not a relaxation Type-2 function.

Type-1 having a negative-valued impulse response and Type-2 having a positive-valued impulse

response. Cohen et al. demonstrated that the positive-real functions form a convex invertible

cone [46]. This work showed that relaxation systems are only convex cones.

Fixing a complex number s ∈ C+ implicitly defines a convex cone Θs in the right half-plane.

It was found that both rational Type-1 and Type-2 relaxation systems are positive on Θs,

leaving the cone invariant. The strictly positive-real relaxation systems are strictly positive on

this cone, mapping to the interior.

Depending on the type of relaxation system G, one can specify where in the cone Θs a

complex number will map to upon action of G. Specifically, given z ∈ Θ+
s , then G(z) ∈ Θ+

s if G

Type-1 and G(z) ∈ Θ+
s if G Type-2. If strictly positive-real, then the mapping is to the interior

of convex cones of Θ+
s or Θ+

s , respectively. Repeated application of G on z will eventually

yield a real-valued number, consequence of the Banach fixed-point theorem. The relevance of a

fixed-point is not yet understood by the author and is under current investigation.

Thus far, we have characterized relaxation systems via the properties exhibited by the

functions themselves in the right half plane. Remarkably, the cone-invariance properties

and iterative convergence properties to a real-value are mirrored by the Hankel operators

with relaxation system symbols. Furthermore, the Hankel operator of a relaxation system is

instrumental in construction an external storage functional of the system, as will be shown in

the next chapter.
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CHAPTER 4

Storage Functionals in LTI

Relaxation Systems

This chapter introduces the Hankel operator with rational symbols, mapping signal spaces

to signal spaces. Next, the basics of monotone operator theory is discussed, culminating in

a discussion of cyclic monotonicity and Rockafellar’s theorem [49]. It is shown that a stable

Type-2 relaxation system’s Hankel operator must derive from a convex functional. Finally, it is

discussed how this convex functional is remarkably the system’s external storage function up to

a constant factor.

4.1 Operators in Dynamical Systems

4.1.1 Hankel Operators

One of the most well-studied operators on spaces of analytic functions are the Hankel operators.

They have found numerous applications in problems pertaining to mathematical analysis, such

as orthogonal polynomials and moment problems. Hankel operators even appear in proofs for

establishing complete monotonicity [43]. In control theory, Hankel operators are utilized in

robust stabilization and model reduction [30, 50].

There are numerous definitions for Hankel operators (matrices) depending upon the nature

of the continuous (discrete) problem at hand [30, 50, 51]. For instance, it may be advantageous

to work in the time-domain or frequency-domain, which affects one’s choice of signal space. Of

particular importance are the bounded Hankel operators over the l2 or H2(D) and L2[0,∞) or

H2(C+) spaces. Herein, we follow the approach of [51] which mirrors that of [30] via a time-flip

operation. As is customary in mathematical analysis, we begin our discussion of the Hankel

operator with the discrete, matrix-based approach.

The Hankel operator is nominally introduced as a matrix-valued function as follows: given a
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sequence g = {gi}i≥0 with gi ∈ C, the (infinite) Hankel matrix Γ = {gj+k}j,k≥0 is given by

Γ =



g0 g1 g2 g3 · · ·
g1 g2 g3 g4 · · ·
g2 g3 g4 g5 · · ·
g3 g4 g5 g6 · · ·
...

...
...

...
. . .


(4.1)

As demonstrated, Hankel matrices have constant ascending skew-diagonal entries. Therefore, if

u = {uj}j≥0, then the Hankel operator yields a sequence y such that

yk =
∑
j≥0

gj+kuj k ≥ 0 (4.2)

It is relevant to characterize what sequence g = {gi}i≥0 yields a bounded Hankel matrix over

l2, meaning Γ : l2 → l2. As it turns out, the theory of Hankel operators is closely connected

to the theory of functions on the unit circle. Nehari’s theorem provides this connection and

gives necessary and sufficient conditions for boundedness over the space of square summable

sequences.

Theorem 4.1.1 (Nehari [50]). Let the Hankel operator Γ be given by Equation 4.1, parame-

terized by the sequence {gi}i≥0. Then Γ is bounded on l2 if and only if there exists a function

ψ ∈ L∞ on the unit circle T such that

gm = ψ̂(m), m ≥ 0 (4.3)

where ψ̂(m) denotes the mth Fourier coefficient of ψ. In this case,

∥Γ∥ = inf{∥ψ∥∞ : ψ̂(m) = gm, m ≥ 0} (4.4)

Nehari’s theorem reduces the problem of whether a sequence {gi}i≥0 determines a bounded

operator on l2 to the existence of an extension of {gi}i≥0 to the sequence of Fourier coefficients

of a bounded function ψ, coined the symbol of the Hankel operator. This presentation of Hankel

operators could be described as ”discrete” since we representing operators as matrices and

domains/ranges as sequences. The extension to the continuous setting, i.e., operator mappings

from L2 → L2, presents no difficulty.

Definition 4.1.1 (Hankel Operator, Time-Domain). Let g ∈ L∞(−∞,∞) and u ∈ L2[0,∞).

Then the Hankel operator with symbol g is defined as a mapping Γg : L2[0,∞) → L2[0,∞) by

(Γgu)(t) :=

∫ ∞

0

g(t+ τ)u(τ)dτ (4.5)
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Via the Laplace transform, one arrives at an equivalent frequency-domain representation.

Definition 4.1.2 (Hankel Operator, Frequency-Domain). Let G(s) ∈ L∞(jR) and u ∈ H2(C+).

Then the Hankel operator with symbol G is defined as a mapping ΓG : H2(C+) → H2(C+) by

(ΓGu)(s) := (P+MG)u = P+ (G(s)u(−s)) (4.6)

Many authors define the Hankel operator as Γg : L2(−∞, 0] → L2[0,∞) and ΓG : H2(C−) →
H2(C+). The definitions provided above are equivalent by applying a time-flip u(t) → u(−t).
By the isometric isomorphism for L2 spaces in the time- and frequency-domains, clearly

∥Γg∥ = ∥ΓG∥.
The benefit of defining the Hankel operator as mapping between two orthogonal functions

spaces is it provides a neat physical interpretation: with respect to LTI dynamical systems, the

Hankel operator models the future (free) response from an initial condition which parameterizes

the past input [41]. Therefore, one can view the Hankel operator as mapping past input to

future output, thereby yielding an ”input-output” analog of the system’s state or memory.

Remark 4.1.1. Suppose G(s) is rational and denote the rational L∞ functions as RL∞. If

G(s) ∈ RL∞, then G may decomposed as follows:

G(s) = Gc(s) +G(∞) +Ga(s) (4.7)

where Gc(s) ∈ RH2(C+) is the causal component and Ga(s) ∈ RH2(C−) is the anti-causal

component. The constant G(∞) is reflective of if G(s) is proper or strictly proper in which

G(∞) < ∞ or G(∞) = 0, respectively. Therefore, without loss of generality, we may assume

G(s) is strictly proper since

ΓGu = P+ (G(s)u(−s)) = P+ (Gc(s)u(−s)) (4.8)

by definition and linearity of the projection operator [30].

4.1.2 Relaxation, Hankel Operators, and a Connection to Dissipa-

tivity Theory

Recall that in dissipativity theory, the connection between the internal dynamics of a system

and its inputs/outputs is traditionally given by the state-dependent storage function. Moreover,

the set of storage functionals is not unique - rather, the set of valid storages is a convex set.

However, an interesting passage from the author of [8] writes

Relaxation systems obey the Onsager reciprocal relations and have the very inter-

esting property that for such systems one may always deduce the storage function
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from input/output experiments, i.e., the storage function is uniquely determined by

the constitutive equations and by the qualitative assumptions that the system is

externally and internally of the relaxation type.

Correcting for a slight error in [8], it was found that the (external) storage functional of a

relaxation system is given by

S(u) =
1

2
⟨u, y⟩L2 =

1

2
⟨u,Γgu⟩L2 (4.9)

=
1

2
⟨u,ΓGu⟩H2 (4.10)

where u ∈ L2(−∞, 0], y ∈ L2[0,∞) and g ∈ L∞ is the completely monotonic impulse response

of an LTI (Type-2) relaxation system; the last step follows from the Parseval-Plancherel theorem.

Note that Willems characterization of the Hankel operator corresponds to the alternative

definition discussed above. It is interesting to note that this comment by Willems in [8] is made

almost en passant; no proof is provided and little attention is paid to it moving forward. Indeed,

it was not until the recent work of Chaffey et al. which proved the external storage functional in

Equation 4.10 is a valid storage with respect to the passive supply rate. Moreover, the storage

derives from cyclic monotonicity of the Hankel operator [35].

We argue that this special property of the strictly positive-real (stable) relaxation systems

deserves more attention because it provides a constructive approach to writing down external

storage functions of a system. The proof connecting cyclic monotonicity, which is made explicit

through a famous theorem of Rockafellar [49, 52], is provided below. While similar to Theorem 5

of [35], we proceed in the input-output, Laplace domain, whereas Chaffey et al. developed their

proof via a state-space representation. As will be discussed in last chapter, the input-output

approach is advantageous because state-space descriptions are not readily amenable to nonlinear

nor complex systems.

4.2 Monotonicity and Rockafellar’s Theorem

In single-variable calculus, a function is monotonic if ”its slope never changes sign,” meaning

the ratio of the difference between two points is always non-negative. This notion is generalized

to inner product spaces by ensuring ”the inner product never changes sign,” where the inner

product of the difference of pairs of elements is always non-negative. The study of operators

which preserve this monotonic relation is called monotone operator theory, and it has deep ties

to convex analysis [53, 54]. To build our way up to this subject, we first require a few definitions

from linear operator theory.
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4.2.1 Properties of Bounded Linear Operators

The following theorems and definitions can be found in Axler’s text on linear algebra [55]. First,

we recall the definition of a linear operator on a Hilbert space being self-adjoint.

Definition 4.2.1 (Adjoint and Self-Adjoint). Suppose U and Y are Hilbert spaces and G :

U → Y a linear operator. The linear operator G∗ : Y → U is the adjoint of G if

⟨y,Gu⟩Y = ⟨G∗y, u⟩U (4.11)

for all u ∈ U and y ∈ Y . If G∗ = G, then G is called self-adjoint and

⟨y,Gu⟩Y = ⟨Gy, u⟩U (4.12)

is satisfied for all u ∈ U and y ∈ Y . This is true if and only if U = Y . Therefore, self-adjointness

of G implies

⟨y,Gu⟩U = ⟨Gy, u⟩U (4.13)

for all u, y ∈ U .

We will drop the subscript on the inner product from now on if the underlying space is clear.

If the domain/range is not a Hilbert space, the definition of self-adjointness becomes somewhat

more complex because one must now consider the domain of the operator on the underlying

Banach or vector space. Since this work is focused on the the L2 and H2(C+) spaces, we obviate

this potential issue.

When working with linear operators often needs to make a distinction between the underlying

field, typically either R and C. Here is one such example.

Theorem 4.2.1. Suppose U is a complex inner product space and G : U → U . Then G is

self-adjoint if and only if ⟨u,Gu⟩ ∈ R for every u ∈ U .

There are many notions of operator positivity. We present one below which is of use to us.

Definition 4.2.2 (Positive Semi-Definite). A linear operator G : U → U is positive semi-definite

if G is self-adjoint and

⟨u,Gu⟩ ≥ 0 (4.14)

for all u ∈ U .

If U is a complex vector space, then we do not require G to be self-adjoint by Theorem

4.2.1. Many authors use the word ”positive” for ”positive semi-definite” or even ”non-negative

definite.”
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4.2.2 Cyclic Monotonicity

Equipped with the basic results of self-adjoint operators, we now may discuss aspects of

monotone operator theory relevant to the rest of this work. Rockafellar illuminated many of

the connections between monotone operators and convex analysis, and was the first to develop

cyclic monotonicity, a stricter form of monotonicity over inner product spaces [49, 52]. First, let

us recall the definition of the dual space.

Definition 4.2.3 (Dual Space [56]). Let U be a normed vector space and F a field (typically, F
will be either R or C). The space of all bounded linear functionals u∗ : U → F is termed the

dual space of U and is denoted by U∗.

Remark 4.2.1. The value of a linear functional u∗ at the element u ∈ U is denoted by the

symmetric notation as u∗(u) = ⟨u, u∗⟩, called the dual pairing. This evaluation is not an inner

product because U may fail to be an inner product space. However, in the case that U is a

Hilbert space, all bounded linear functions u∗ are generated by elements of U , a consequence

of the Riesz representation theorem. In this scenario, u∗(u) = ⟨u, u∗⟩U is an inner product

evaluation, demonstrating that Hilbert spaces are self-dual.

Now, denote U as an arbitrary Hilbert space and G : U → U an operator mapping the Hilbert

space to itself. Note that G may possibly be a nonlinear operator. The following definitions are

borrowed from [54].

Definition 4.2.4 (Graph of an Operator). The graph of G is a subset of U × U and is defined

by

gra (G) = {(u, y) : u ∈ U , y = G (u)} (4.15)

Definition 4.2.5 (Monotone Operator). G is termed monotone if, for all u1, u2 ∈ U , y1 = G (u1),

y2 = G (u2),

⟨y1 − y2, u1 − u2⟩ ≥ 0 (4.16)

Definition 4.2.6 (Maximal Monotone). If gra (G) is not contained within the graph of any

other monotone operator, then G is termed maximally monotone.

Monotonicity is defined with respect to pairs of elements within U . The natural generalization
of this concept is to consider more than two elements, i.e., n elements - this is called n-cyclic

monotonicity.

Definition 4.2.7 (Cyclic Monotonicity). The operator G : U → U is said to be n-cyclic

monotone if, for all sets of input-output pairs {(ui, yi) : ui ∈ U , yi = G(ui), i = 0, 1, · · · , n},
one has that

⟨y0, u0 − u1⟩+ ⟨y1, u1 − u2⟩+ · · ·+ ⟨yn, un − u0⟩ ≥ 0 (4.17)
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If G is n-cyclic monotone for all n ≥ 1, then G is cyclically monotone. If gra (G) is not contained

within the graph of any other monotone operator, then G is maximal cyclic monotone.

Remark 4.2.2. Maximality is guaranteed for continuous operators [54], Cor. 20.25. Since this

thesis is solely concerned with continuous operators, all operations are automatically maximal.

Therefore, when referring to monotonicity or cyclic monotonicity of an operator, we will not

mention maximality explicitly.

Cyclic monotonicity was introduced into convex analysis by Rockafellar’s landmark work

[52] and fully characterized, after correcting for a small mistake, in [57]. Since then, cyclic

monotonicity has found numerous applications in dynamical systems, optimal transport and

convex analysis [49, 58, 59].

Before stating Rockafellar’s characterization of cyclically monotone operators, we first require

the notion of a subgradient. Subgradients, as the name suggests, generalize the traditional

definition of the gradient of a function. We first give an exposition of subgradients with respect

to Rn for pedagogical purposes, then extend the notion arbitrary real-Banach spaces [57].

For a convex and differentiable function f : Rn → R, it is the case that

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom(f) = Rn (4.18)

When f is not differentiable, then the subgradient enters the picture.

Definition 4.2.8 (Subgradient and Subdifferential). A subgradient of a convex function f :

Rn → R at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y ∈ dom(f) = Rn (4.19)

If f is differentiable, then the subgradient is uniquely g = ∇f(x). If f is not convex, the

definition still holds albeit the subgradient may not exist [53, 54]. In general, letting U be a

real Banach space with dual U∗, the subdifferential of f is the (possibly multi-valued) mapping

∂f : U → U∗ defined by the set of all subgradients:

∂f(x) = {x∗ ∈ U∗ : f(y) ≥ f(x) + ⟨y − x, x∗⟩ ∀y ∈ U} (4.20)

where ⟨·, ·⟩ is the dual pairing between U and U∗.

It is well known in convex analysis that the subgradient of any convex function is a monotone

operator. The logical follow-up question is: ”when is an operator the subgradient of a convex

function?” It turns out that the operator must be cyclically monotone, a result owed to

Rockafellar which we now state [52].

Theorem 4.2.2 (Rockafellar’s Theorem, [52] (Theorem 3), [57] (Theorem B), [54] (Theorem

22.18)). Let G : U → U be a continuous operator on a real Hilbert space U . Then G is a
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(maximal) cyclically monotone operator if and only if it is the subgradient of a closed, proper

and convex function S : U → (−∞,∞]. The solution S is unique up to an arbitrary additive

constant.

For completeness, we include definitions of the necessary and sufficient conditions for cyclic

monotonicity from Rockafellar’s theorem [54]. Denote f as a real-valued function defined over a

nonempty set X.

Definition 4.2.9 (Epigraph). The epigraph of a function f : X → R is the set

epi(f) := {(x, y) ∈ X × R : f(x) ≤ y} (4.21)

Definition 4.2.10 (Closed). A function f is closed if its epigraph, epi(f), is a closed set in

X × R. This means that for all sequences {(xi, yi)}∞i=1 ⊂ epi(f) converging to (x, y), one has

that (x, y) ∈ epi(f).

Definition 4.2.11 (Proper). A function f is proper if −∞ /∈ f(X) and dom(f) ̸= ∅, where

the domain of f is defined as

domf := {x ∈ X : f(x) <∞} (4.22)

Definition 4.2.12 (Convex). A function f is convex if for all x1, x2 ∈ X and θ ∈ [0, 1],

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (4.23)

Remark 4.2.3. When stating the necessary and sufficient conditions of Rockafellar’s theorem,

many authors require S to be proper, lower semicontinuous and convex. Since the epigraph of a

real-valued function is closed if and only if it is lower semicontinuous, the conditions here and

those presented in Theorem 4.2.2 are equivalent.

While Rockafellar’s theorem gives necessary and sufficient conditions for cyclic monotoncity,

it is, in general, difficult to construct the closed, proper and convex function S whose subgradient

is the operator under study. As a step toward constructing the convex functional S, we borrow

a development from Asplund [60]. Therein, the author characterized cyclic monotonicity of

linear operators over a real Banach space in terms of the operator’s numerical range. To state

this theorem, we first define the complexification of an operator.

Definition 4.2.13 (Complexification). Given an operator G acting on a real Hilbert space U ,
G : U → U , define the complexification of G, denoted as Gc, as

Gc(u) = Gc(σ + jω) := G(σ) + jG(ω) (4.24)
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for u = σ+ jω. The complexification of the Hilbert space, Uc, consequently is endowed with the

inner product

⟨u1, u2⟩Uc
:= ⟨σ1 + jω1, σ2 + jω2⟩Uc = ⟨σ1, σ2⟩U + ⟨ω1, ω2⟩U + j (⟨σ1, ω2⟩U − ⟨σ2, ω1⟩U) (4.25)

which follows directly from the definition of the inner product presented in Chapter 2.

The numerical range, is the image of the unit sphere over Hilbert space U under the quadratic

form of u→ ⟨u,Gu⟩ for u ∈ U [61]. For the complexification, the numerical range of Gc on Uc is

W (Gc) :=

{
⟨u,Gc(u)⟩Uc

∥u∥
: u ∈ dom (Gc) , ∥u∥ ≠ 0

}
(4.26)

We now are in a position to state Asplund’s characterization of n-cyclically monotone linear

operators on real spaces, albeit with a bit of rewording from the original document:

Theorem 4.2.3 (Asplund [60], Theorem 3). Let G be a linear operator on a real Hilbert space

U . Then G is n-cyclic monotone if and only if | arg(v)| ≤ π/n for all v ∈ W (Gc).

Remark 4.2.4. Asplund proved this result by only assuming U to be a real Banach space,

equipped with the dual pairing u∗(u) = ⟨u, u∗⟩ for u ∈ U and u∗ ∈ U∗. Since we are working

in Hilbert spaces, the dual pairing naturally takes the form of the inner product by the Riesz

representation theorem.

As cyclic monotonicity is the limit of n-cyclic monotonicity, the following corollary is

immediate.

Corollary 4.2.1. Let G be a linear operator on a real Hilbert space U . Then G is cyclically

monotone if and only if arg(v) = 0 for all v ∈ W (Gc).

Using the complexification of U and definition of the numerical range of Gc, a more useful

characterization of cyclic monotonicity arises.

Theorem 4.2.4 ([35], Corollary 1). A linear operator G on real Hilbert space H is cyclically

monotone if and only if G is self-adjoint, and for all u ∈ dom (G), G is positive semi-definite.

Proof. ⇐= : Suppose G is cyclically monotone. Then from Corollary 4.2.1,

arg(v) = arg

(
⟨u,Gc(u)⟩Uc

∥u∥

)
= 0 (4.27)

for all v ∈ W (Gc). Therefore, v ≥ 0 by definition of argument. Hence,

⟨u,Gc(u)⟩Uc

∥u∥
≥ 0 ⇐⇒ ⟨u,Gc(u)⟩Uc ≥ 0

⇐⇒ ⟨σ,G(σ)⟩U + ⟨ω,G(ω)⟩U + j⟨σ,G(ω)⟩U − j⟨ω,G(σ)⟩U ≥ 0
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Collecting the real and imaginary components yields

Re : ⟨σ,G(σ)⟩U + ⟨ω,G(ω)⟩U ≥ 0 (4.28)

Im : j⟨σ,G(ω)⟩U − j⟨ω,G(σ)⟩U = 0 (4.29)

Since the inner product is over a real Hilbert space, it is symmetric. For the imaginary

components, this yields

⟨σ,G(ω)⟩U = ⟨ω,G(σ)⟩U = ⟨G∗(ω), σ⟩U = ⟨σ,G∗(ω)⟩U

thereby showing G is self-adjoint. For the real components, one has

⟨σ,G(σ)⟩U ≥ 0 ≥ −⟨ω,G(ω)⟩U for all σ, ω ∈ U

⇐⇒ ⟨σ,G(σ)⟩U ≥ 0 for all σ ∈ U

thereby showing that G is positive semi-definite.

=⇒ : Now suppose that G is self adjoint and positive semi-definite. Running the steps above

in reverse will yield that arg(v) = 0 for all v ∈ W (Gc), thereby implying cyclic monotonicity of

G by Corollary 4.2.1.

Equipped with the technical tools from monotone operator theory, we are now ready to

explore cyclic monotonicity in the context of Hankel operators.

4.3 Cyclic Monotonicity of Hankel Operators with Stable

Relaxation Symbols

In this section, we will be concerned with the sets of rational relaxation systems, Ri. Recall

from Nehari’s Theorem that L∞ exhausts the set of symbols for which the Hankel operator is

bounded over H2(C+). Therefore, we utilize the sets strictly positive real relaxation systems,

Ris from Chapter 3. Doing so ensures the impedance functions defined by these classes are

essentially bounded.

We now are interested in computing the external storage functionals of arbitrary strictly

positive-real relaxation systems. Equipped with Rockafellar’s theorem and Asplund’s character-

ization of cyclic monotonicity, this section culminates in Theorem 4.3.1, demonstrating that

external storages of stable Type-2 relaxation systems are unique up to an additive constant, a

result attributable to the remarkable fact that Hankel operators with stable Type-2 relaxation

symbols are cyclic monotone. In the Laplace-domain, such a result gives an algebraic method

to calculate the external storage: under a qualitative assumption that a system behaves like a

Type-2 relaxation system, calculation of the storage functional is simply a matter of summing
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the squares of the input trajectory, evaluated at the poles of the relaxation system.

We begin this section a few technical lemmas characterizing the output from application of

the Hankel operator.

4.3.1 Hankel Operator Mappings

Lemma 4.3.1. Suppose u ∈ HR
2 (C+) and G ∈ R2s. Let

G(s) = G0 +
n∑

i=1

Gi

s+ pi
(4.30)

as in Equation 3.10 with G0, Gi ≥ 0, pi > 0 and pi ̸= pj for i ≠ j. Then the Hankel operator

ΓG : HR
2 (C+) → HR

2 (C+) is such that

(ΓGu) (s) =
n∑

i=1

Giu(pi)

s+ pi
(4.31)

Proof. Define u(s) by the Szegő kernel as

u(s) =
∑
j

1

2π

αj

s+ λj
=
∑
j

βj

s+ λj
(4.32)

where βj = αj/(2π) and βj ∈ C. From Equation 4.8, we must only consider the strictly proper

component of G. Hence,

(ΓGu)(s) = P+ (G(s)u(−s))

= P+

((
n∑

i=1

Gi

s+ pi

)(∑
j

−βj
s− λj

))

= P+

(
n∑

i=1

∑
j

−Giβj

(s+ pi)(s− λj)

)

Fixing i and j, one can perform partial fractions as

−Giβj

(s+ pi)(s− λj)
=

A

s+ pi
+

B

s− λj

Solving yields

A =
Giβj

λj + pi
B = − Giβj

λj + pi
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Thus,

(ΓGu)(s) =
n∑

i=1

∑
j

Giβj

λj+pi

s+ pi
=

n∑
i=1

γi
s+ pi

for γi ∈ C. Fix i = k. We can calculate γk as

γk = Gk

∑
j

βj

λj + pk
= Gku(pk) (4.33)

Note that because u ∈ HR
2 (C+), u(pk) ∈ R. Therefore, γk ∈ R. Therefore,

(ΓGu) (s) =
n∑

i=1

Giu(pi)

s+ pi

thereby concluding the proof.

We now present an analogous lemma with proof for Type-1 systems.

Lemma 4.3.2. Suppose u ∈ HR
2 (C+) and G ∈ R1s. Let

G(s) = G0 +
n∑

i=1

sGi

s+ pi
(4.34)

as in Equation 3.17 with G0, Gi ≥ 0, pi > 0 and pi ̸= pj for i ≠ j. Then the Hankel operator

ΓG : HR
2 (C+) → HR

2 (C+) is such that

(ΓGu) (s) =
n∑

i=1

−piGiu(pi)

s+ pi
(4.35)

Proof. Write u as in Equation 4.32. Application of the Hankel operator yields

(ΓGu)(s) = P+ (G(s)u(−s))

= P+

((
n∑

i=1

sGi

s+ pi

)(∑
j

−βj
s− λj

))

= P+

(
n∑

i=1

∑
j

−sGiβj

(s+ pi)(s− λj)

)

Fixing i, j and performing partial fraction yields

−sGiβj

(s+ pi)(s− λj)
=

A

s+ pi
+

B

s− λj
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where A and B are

A =
−piGiβj

pi + λj
B =

Aλj
pi

(4.36)

Thus,

(ΓGu)(s) =
n∑

i=1

∑
j

−piGiβj

pi+λj

s+ pi
=

n∑
i=1

γi
s+ pi

for γi ∈ C. Fix i = k. We can calculate γk as

γk = −pkGk

∑
j

βj

pk + λj
= −pkGku(pk) (4.37)

Therefore,

(ΓGu) (s) =
n∑

i=1

−piGiu(pi)

s+ pi

thereby concluding the proof.

The careful reader will note the sign of γi depends on the evaluation of u(pi), as well as

whether or not G is a Type-1 or Type-2 relaxation symbol. If we restrict ourselves to only

consider real exponentials in the time-domain, a clear description of the signs of γi become

apparent.

Definition 4.3.1 (Subsets of HR
2 (C+)). Define the following subsets of HR

2 (C+), where R++

(R+) denotes the positive (non-negative) real axis and R− denotes the non-positive real axis.

Right-hand side superscripts refer the sign of pj, whereas right-hand side subscripts refer to

sign of αj. The presentation below follows the Szegő kernel structure of the Hardy space.

HR
2 (C+)+R :=

{
u ∈ HR

2 (C+) : u(s) =
∑
j

αj

s+ pj
where αj ∈ R, pj ∈ R++, pj ̸= pi

}
(4.38)

HR
2 (C+)+R+ :=

{
u ∈ HR

2 (C+) : u(s) =
∑
j

αj

s+ pj
where αj ∈ R+, pj ∈ R++, pj ̸= pi

}
(4.39)

HR
2 (C+)+R− :=

{
u ∈ HR

2 (C+) : u(s) =
∑
j

αj

s+ pj
where αj ∈ R−, pj ∈ R++, pj ̸= pi

}
(4.40)

Note that HR
2 (C+)+R is a convex cone in the Hardy space; indeed, u(s) = θ1u1(s) + θ2u2(s) ∈

HR
2 (C+)+R for θ1, θ2 ≥ 0 and u1(s), u2(s) ∈ HR

2 (C+)+R by the vector space structure. We may
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partition this space as

HR
2 (C+)+R = HR

2 (C+)+R+ ∪HR
2 (C+)+R− (4.41)

where both spaces on the right-hand side are also convex cones by their sign restrictions. This

construction is analogous to the construction of Θs = Θ+
s ∪Θ+

s from Chapter 3. These signal

spaces give an immediate corollary.

Corollary 4.3.1. From lemma, 4.3.1 and 4.3.2, one has the following:

I Suppose G(s) ∈ R1s. Then

i If u(s) ∈ HR
2 (C+)+R , then (ΓGu)(s) ∈ HR

2 (C+)+R

ii If u(s) ∈ HR
2 (C+)+R+ , then (ΓGu)(s) ∈ HR

2 (C+)+R−

iii If u(s) ∈ HR
2 (C+)+R− , then (ΓGu)(s) ∈ HR

2 (C+)+R+

II Suppose G(s) ∈ R2s. Then

i If u(s) ∈ HR
2 (C+)+R , then (ΓGu)(s) ∈ HR

2 (C+)+R

ii If u(s) ∈ HR
2 (C+)+R+ , then (ΓGu)(s) ∈ HR

2 (C+)+R+

iii If u(s) ∈ HR
2 (C+)+R− , then (ΓGu)(s) ∈ HR

2 (C+)+R−

In other words, the Hankel operators of strictly positive-real relaxation systems preserve

the cone of HR
2 (C+)+R , mapping a decaying exponential in the past to a decaying exponential in

the future. Hankel operators of Type-1 systems reverse the sign, whereas Hankel operators of

Type-2 systems preserve the sign. This result is analogous to the behavior of the relaxation

functions on Θs observed in Theorem 3.3.1, where the ”reversal” is now due to Type-1, instead

of Type-2.

4.3.2 Cyclic Monotonicity of the Relaxation Hankel Operators

Equipped with the lemmas of the previous subsection, we now proceed to show cyclic monotonic-

ity of the Type-2 relaxation systems. We again state this result was demonstrated by Chaffey

et al. in [35] via state-space methods. The Laplace-domain approach is demonstrated below.

Theorem 4.3.1 (Cyclic Monotonicity of Type-2 Hankel Operators). If G ∈ R2s, then its Hankel

operator ΓG : HR
2 (C+) → HR

2 (C+) is cyclically monotone.

Proof. It suffices to show that ΓG is self-adjoint and positive semi-definite. By the residue
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theorem,

⟨u,ΓGv⟩H2 =
1

2π

∫ ∞

−∞
u∗(jω) (ΓGv) (jω)dω

=
1

2πj

∫ j∞

−j∞
u(−s) (ΓGv) (s)ds

=
1

2πj

∮
C−
u(−s) (ΓGv) (s)ds

=
1

2πj

2πj
∑

poles∈C−

Res (u(−s) (ΓGv) (s))


=

∑
poles∈C−

Res
(
u(−s) (ΓGu) (s)

)
where the third equality’s integral is a contour integral up the imaginary axis and around an

infinite semicircle (counterclockwise) in the left half-plane, followed by a return to the origin

up the imaginary axis. The infinite semicircle’s contribution to the integral is zero because

u(−s) (ΓGv) (s) is strictly proper [62]. Therefore

⟨u,ΓGv⟩ =
∑

poles∈C−

Res
(
u(−s) (ΓGv) (s)

)
(4.42)

Alternatively, we could have considered the contour integral up the imaginary axis and around

an infinite semicircle (clockwise) in the right half-plane, which would correspond to

1

2πj

∮
C+

v(s) (ΓGu) (−s)ds =
∑

poles∈C+

Res
(
(ΓGu) (−s)v(s)

)
(4.43)

Note the minus signs cancel from this operation due to the counter-clockwise winding number

convention. Since Equation 4.42 and 4.43 are equal, it follows that

⟨u,ΓGv⟩ = ⟨ΓGu, v⟩ (4.44)

and hence ΓG is self-adjoint.

Now we seek to prove positivity. Expanding the term inside the residue, and using the
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representation of (ΓGu)(s) from lemma 4.3.1 we have from partial fractions that

u(−s) (ΓGu) (s) =

(∑
j

βj

−s+ λj

)(
n∑

i=1

γi
s+ pi

)

=

(∑
j

−βj
s− λj

)(
n∑

i=1

γi
s+ pi

)

=
∑
j

θj

s− λj
+

n∑
i=1

δi
s+ pi

for some coefficients θj, δi ∈ C. Hence

∑
poles∈C−

Res
(
u(−s) (ΓGu) (s)

)
=

n∑
i=1

δi (4.45)

Consider k ∈ [1, n]. One can calculate δk easily since each pole is simple (by relaxation).

δk = lim
s→−pk

(s+ pk)

(
u(−s)

n∑
i=1

γi
s+ pi

)
(4.46)

= lim
s→−pk

(
u(−s)γk + u(−s)

n−1∑
i=1

γi(s+ pk)

s+ pi

)
(4.47)

= u(pk)γk (4.48)

The expression for γk is given by lemma 4.3.1 in Equation 4.33. Combining Equations 4.48 and

4.33, we have that

δk = Gk (u(pk))
2 ≥ 0 (4.49)

which implies that

⟨u,ΓGu⟩H2 =
n∑

i=1

δi =
n∑

i=1

Gi (u(pi))
2 ≥ 0 (4.50)

Hence, ΓG is positive semi-definite.

Theorem 4.3.1 demonstrates that the Hankel operator over the Type-2 relaxation system

symbols is cyclically monotone. By Rockafellar’s theorem, the Hankel operator ΓG for G ∈ R2s

is the (sub)gradient of a closed, convex and proper functional mapping S from HR
2 (C+) → R+.

Chaffey et al. demonstrated that the external storage functional of a relaxation in Equation 4.10

is a valid storage [35] with respect to the passive supply rate in the sense of Hughes’ definition of

passivity [12]. For pedagogical purposes, we follow Chaffey et al. to show that the subgradient

of the external storage S is indeed ΓG.

Theorem 4.3.2 (Subgradient of External Storage Functional [35]). If G ∈ R2s, then ΓG = ∂S

where S is a non-negative storage function S : HR
2 (C+) → R+.
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Proof. Proving this theorem necessitates a notion of a derivative on H2(C+), which is afforded

by the functional derivative from the calculus of variations. See [63] for an in-depth treatment

of the subject.

Define the functional derivative of S(u) by〈
∂S

∂u
, ϕ

〉
:=

[
d

dϵ
(S(u+ ϵϕ))

]
ϵ=0

(4.51)

where ϕ is an arbitrary function and ϵϕ is the first variation of u. Computing this quantity

yields 〈
∂S

∂u
, ϕ

〉
=

1

2

[
d

dϵ
⟨u+ ϵϕ,ΓG(u+ ϵϕ)⟩

]
ϵ=0

=
1

2

[
d

dϵ
⟨u+ ϵϕ,ΓG(u) + ϵΓG(ϕ)⟩

]
ϵ=0

=
1

2

[
⟨ d
dϵ

(u+ ϵϕ),ΓG(u) + ϵΓG(ϕ)⟩+ ⟨u+ ϵϕ,
d

dϵ
(ΓG(u) + ϵΓG(ϕ))⟩

]
ϵ=0

=
1

2
[⟨ϕ,ΓG(u) + ϵΓG(ϕ)⟩+ ⟨u+ ϵϕ,ΓG(ϕ)⟩]ϵ=0

=
1

2
[⟨ϕ,ΓG(u)⟩+ ⟨u,ΓG(ϕ)⟩]

= ⟨ΓGu, ϕ⟩

The second line used linearity of the Hankel operator. The third line used the differentiability

rule of inner products: d
dt
⟨f(t), g(t)⟩ = ⟨f ′

(t), g(t)⟩ + ⟨f(t), g′
(t)⟩. Finally, the last line used

self-adjointness of the Hankel operator with a Type-2 relaxation symbol over real Hilbert space

HR
2 (C+). Since this result holds for all u, it follows that ∂S = ΓG.

As an example, let us calculate the storage of a simple Type-2 relaxation system in both the

time-domain and frequency-domain.

Example 4.1. Let the variables from Figure 4.1 assume the following values: R0 = 3[Ω], R1 =

1[Ω], R2 = 2[Ω], C1 = 2[F ] and C2 = 0.25[F ]. By duality, L1 = C1 = 2[H] and L2 = C2 = 0.25[H].

Let u(t) = e−t. Then u(s) = 1/(s+1). Given the circuit parameter values, the impulse response

z(t) and impedance Z(s) are given by

z(t) = 3δ(t) +
1

2
e−(1/2)t + 4e−2t

Z(s) = 3 +
1/2

s+ (1/2)
+

4

s+ 2

Let us proceed in calculating the storage in the time-domain using the Hankel convolution from
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Equation 4.5. All inner products are with respect to L2.

S(u(t)) =
1

2
⟨u(t), (Γgu)(t)⟩

=
1

2

∫ ∞

0

e−t

(∫ ∞

0

(
3δ(t+ τ) +

1

2
e(−1/2)(t+τ) + 4e−2(t+τ)

)
e−τdτ

)
dt

=
1

2

∫ ∞

0

e−t

(
3etθ(−t) + 1

3
e(−1/2)t +

4

3
e−2t

)
dt

=
1

2

∫ ∞

0

3θ(−t) + 1

3
e(−3/2)t +

4

3
e−3tdt

=
1

2

(
3(t(1− θ(t))) +

(
−2

9

)(−3/2)t

+

(
−4

9

)
e−3t

)∣∣∣∣∞
0

=
1

2

(
0 +

2

9
+

4

9

)
=

1

3

where

θ(t) :=

0 t < 0

t t ≥ 0

is the Heaviside step-function and d
dt
θ(t) = δ(t) is the Dirac delta function.

Now, let us calculate the storage in the Laplace-domain by Theorem 4.3.1.

S(u(s)) =
1

2
⟨u(s), (ΓGu)(s)⟩

=
1

2

n∑
i=1

Gi (u(pi))
2

=
1

2

(
1

2

(
1

(1/2) + 1

)2

+ 4

(
1

(2) + 1

)2
)

=
1

2

(
2

9
+

4

9

)
=

1

3

As expected, we get identical results.

We now proceed to prove an analogous theorem for Hankel operators with stable Type-1

relaxation symbols. It was found that such operators admit mirror behavior to their Type-2

counterparts, subject to an additional minus sign.

Theorem 4.3.3 (Hankel Relaxation Type-1). If G ∈ R1s, then its Hankel operator ΓG :

HR
2 (C+) → HR

2 (C+) is negative cyclically monotone in the following sense: ΓG is self adjoint
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Figure 4.1: Type-2 relaxation system and its dual representation from Example 4.1.

and negative semi-definite.

Proof. As before, since ΓG is a linear operator, it suffices to show self-adjointness and negative

semi-definiteness of ΓG. Proving self-adjointness follows an identical procedure to Theorem 4.3.1

and is taken as a given. Negative semi-definiteness follows similarly where the main difference is

in determining γk, where there is an extra s term to account for in the iterated sum. Due to

proof similarity, we provide a sketch of the result below.

From Theorem 4.3.1 Equation 4.45, the inner product is

⟨u,ΓGu⟩H2 =
n∑

i=1

δi

where δi is given by Equation 4.48 as

δi = u(pi)γi

Lemma 4.3.2 Equation 4.37 gives γi as

γi = −pkGk

∑
j

βj

pi + λj
= −piGiu(pi)

Therefore,

⟨u,ΓGu⟩H2 =
n∑

i=1

δi =
n∑

i=1

−piGi (u(pi))
2 ≤ 0

Hence, ΓG is negative semi-definite.

The development of an external storage functional for the Type-1 relaxation systems is

tenuous because the negative semi-definiteness of the Hankel operator would suggest a non-

positive storage functional. At the time of writing, the author is investigating the physical

meaning of such a result, which is reserved for future work.
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4.4 Summary

This chapter introduced the Hankel operator with strictly positive-real (stable) relaxation

symbols. Rockafellar’s theorem was discussed, which associated cyclic monotonicity of a linear

operator to a corresponding convex functional, of which it is the subgradient. It was proved that

Type-2 relaxation systems have cyclically monotone Hankel operators, and the associated convex

functional is an external storage for the system as predicted by dissipativity theory [8, 35]. This

result transforms the traditional state-dependent storage function to an input-dependent storage

function; furthermore, the Laplace-domain characterization of the external storage gives an

algebraic expression to easily calculate the storage.

4.5 Discussion

A number of parallels may be drawn between Chapter 3 and Chapter 4. As mentioned after

Corollary 4.3.1 the Hankel operators of strictly positive-real relaxation systems preserve the

cone of HR
2 (C+)+R , giving the time-domain interpretation of mapping a decaying exponential in

the past to a decaying exponential in the future. The signs of the residues of the exponential

in the Laplace-domain, upon application of the Hankel operator, depend upon the relaxation

system type: Type-1 systems reverse the sign, whereas Type-2 systems preserve the sign. This

result mimics the behavior of the relaxation functions on Θs observed in Theorem 3.3.1, where

the roles of ”reversing sign” are now flipped.

One interpretation is that the positivity properties of relaxation systems in the right half-plane

apply almost mutatis mutandis to their Hankel operators. Indeed, one may (cursorily) achieve

similar statements by replacing ”cone-invariance of complex numbers” with ”cone-invariance

of decaying exponentials” and ”stable relaxation systems” with ”Hankel operators of stable

relaxation systems.

Chapter 3 demonstrated that iteration in the right-half plane for stable relaxation systems

will eventually converge onto the real axis, a result owing to strict positivity and positive-realness.

While not proven in this work (and remains to be shown), preliminary results demonstrate that

a similar result holds for the stable relaxation Hankel operators. For example, recent work has

shown that repeated application of the Hankel operator on a sum of decaying exponentials will

reduce the residues (coefficients) of the output to zero, thus eventually converging to a value on

the real axis. The benefit of such an observation remains to be seen.

Finally, we remark on cyclic monotonicity and external storage functionals. For Type-2

systems, the equivalence between the convex functional predicted by cyclic monotonicity and

the storage function from dissipativity theory has been established [35] and approached from

a different perspective in this work. For the Type-1 systems, introduction of a negative sign

implies that the storage is non-positive. At the time of writing, the physical interpretation of
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such a storage is still underway.

As an operator theoretic concept, cyclic monotonicity is well-defined for nonlinear operators.

Hence, it is plausible that investigating nonlinear relaxation systems via cyclic monotonicity is

a forward step in the tractable analysis of nonlinear circuits. We discuss this issue further in

the final chapter, concluding with thoughts on future work.
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CHAPTER 5

Conclusions and Outlook

5.1 Summary

This thesis sought to provide a clear qualitative and quantitative description of the linear

relaxation systems for use in network and systems analysis. Herein, it was found that two types

of relaxation exist: Type-1 relaxation systems correspond to the impedance Z(s) or admittance

Y (s) of RL or RC networks by circuit duality, respectively, and vice-versa for Type-2 systems.

Conceptually, relaxation systems only maintain one type of energy storage element and differ by

how the energy is stored: Type-1 in the magnetic field of the inductor and Type-2 in the electric

field of the capacitor, if defined with respect to the impedance function Z(s) = v(s)/i(s).

As subclasses of positive-real functions, the classes of relaxation systems inherit the structural

form of a convex cone. This result is a manifestation of the constraints on the realizability of a

passive circuit, which has a physical interpretation via positive sums of series (parallel) intercon-

nections of impedances (admittances) through the passivity theorem. Necessary conditions for

relaxation were provided in terms of positive operations on specific convex cones in the right

half-plane.

Since energy flow and storage is of fundamental concern in RL and RC networks, dissipativity

theory provides a natural framework to quantify the energy stored internally by a system in

response to external stimuli. Of the passive circuits, the relaxation systems are interesting in

that their storage functionals are input-output-dependent, rather than state-dependent. This

property was elucidated by modeling a relaxation system as a Hankel operator mapping finite

energy signals to finite energy signals (L2[0,∞) or H2(C+)). Herein, it was revealed that

Hankel operators with stable relaxation symbols are positive on the cone of real-valued decaying

exponentials. Furthermore, many of the positivity results for relaxation systems on the right

half-plane carry over to their correspondent Hankel operators.

For the stable Type-2 systems, these operators are cyclically monotone. A result due to

Rockafellar requires that such operators are subgradients of convex functionals. Remarkably, the
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functional predicted by Rockafellar is identical to the (external) storage observed by Willems

for Type-2 relaxation systems in [8] and clarified by Chaffey et al. in [35]. From the perspective

of modeling in the Laplace-domain, one acquires an algebraic expression of the external storage

as a summation of squares of the past input trajectory, evaluated at the poles of system, under

the qualitative assumption the system behaves like a Type-2 system. A similar result holds

for the Type-1 systems and a complete characterization of their external storage functionals is

underway.

5.2 Discussion and Future Work

The impetus for this work is grounded in the aspirations of neuromorphic engineering, which

promises to deliver biologically-inspired computational machines. Yet, many challenges persist

in making neuromorphic engineering a reality. In particular, the nonlinearities introduced by

biological systems when processing voltage to current impede a tractable analysis. An example

of such difficulties was described in Chapter 1, where the nonlinear Hodgkin-Huxley (HH) model

of an excitable cell illuminated discrepancies between the governing non-monotonic state-space

model and the empirically monotonic input-output data. This mismatch points to the larger

issue of nonlinear synthesis: there is no theory detailing what systems are realizable from

nonlinear circuit elements.

The linear relaxation systems derive from monotonic impulse responses, thereby serving

as a proxy model of biophysical systems which relax toward solutions over a sufficiently long

time-horizon (the potassium current of the Hodgkin-Huxley model is one such example). Various

notions of monotonicity are fundamental in describing the relaxation systems. Recent work has

argued that monotonicity provides a framework to define mixed feedback in networked systems,

and that mixed feedback is an essential characteristic of the Hodgkin-Huxley circuit [64, 65].

Hence, its plausible that developing a theory of nonlinear relaxation predicated on notions of

monotonicity and positivity would permit a framework for constructing and analyzing nonlinear

biological circuits.

5.2.1 Criteria for Nonlinear Relaxation Systems

As a step toward developing a theory of nonlinear relaxation for applications in neuromorphic

engineering and conductance-based modeling, we argue that many results presented in this

thesis for the linear case readily extend to nonlinear systems. At the time of writing, no agreed

upon definition of nonlinear relaxation exists; therefore, the following discussion is based solely

on properties the author feels ought to be required of a nonlinear relaxation system.

Firstly, the cone-invariance (positivity) of relaxation systems in the right half-plane, as

discussed in Chapter 3, and of relaxation Hankel operators on the spaces of real-valued decaying

exponentials, should be enforced for any nonlinear relaxation model. An interpretation of this
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result is energy dissipation, which accurately describes any physical system that relaxes toward

a solution given enough time. Since cone-invariance is an input-output property exhibited

without reference to any underlying linearity assumptions, requiring it as a necessary condition

for nonlinear relaxation is permissible.

Secondly, cyclic monotonicity ought to be a property exhibited by the Hankel operators

of nonlinear relaxation systems. Again, because cyclic monotonicity of an operator is defined

without any underlying linearity assumptions, it naturally extends to nonlinear systems. In this

work, cyclic monotonicity of the Hankel operator characterized the external storage of a stable

relaxation system, thereby describing its internal energy as a function of past input. While the

results herein crucially relied on linearity of the Hankel operator, one may extend the definition

of the Hankel operators to nonlinear systems in the following way.

Recall that one interpretation of the Hankel operator is a mapping from past input to future

output. From this perspective, any underlying linearity is an a priori assumption. Defining a

nonlinear Hankel operator as any nonlinear mapping of past input to future output, one readily

generalizes the Hankel operator to nonlinear systems. As we require cone-invariance in the right

half-plane and space of decaying exponential signals, there appear to be two ways of tractably

defining nonlinear relaxation.

The first approach would require a single-input, nonlinear Hankel operator which demon-

strates cone-invariance for any input. Mapping a past signal to a future signal, this formulation

is fundamentally non-incremental. The second approach would require a multi-input, nonlinear

Hankel operator which demonstrates cone-invariance for any increment of inputs. Mapping past

increments to future increments, this formulation is fundamentally incremental.

The author feels the second approach, based upon incremental mappings, is more amenable

to analysis. Many technical results herein crucially relied on reproducing kernel Hilbert space

(RKHS) theory, where the structure of the Szegő kernel function on H2(C+) simplified many

results. This work demonstrated relaxation systems are intimately related to energy dissipation;

indeed it is no surprise that many results in Chapter 4 relied on the Szegő kernel, which has the

time-domain representation of a decaying complex exponential and physical interpretation of

energy dissipation. How one’s choice of kernel affects the signal properties exhibited by elements

within the RKHS is a well understood concept in the machine learning community [29, 66].

As the kernel function K is of the form K(u1, u2) for inputs u1 and u2, it seems plausible

to develop a RKHS-based framework for defining nonlinear relaxation systems as incremental

nonlinear Hankel operators on inputs u1, u2 obeying positivity properties, e.g., cone-invariance

and cyclic monotonicity. This is in line with the work pioneered by George Zames in the 1960s,

which viewed dynamical systems as operator mappings between signal spaces [23, 24], and of

recent work in kernel-based identification of dynamical systems [4].

As RKHS theory is equipped with numerous properties for approximation, interpolation

and tractability, such as the Representer Theorem [29], this approach shows promise. Future
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work will investigate this framework; at the time of writing, utilization of Legendre transform

and Fenchel’s duality theorem, in combination with RKHS theory, in learning nonlinear Hankel

operators from data for nonlinear relaxation systems seems especially fruitful.

In reference to nonlinear relaxation and the nonlinear synthesis question, demonstrating

cyclic monotonicity of the Hankel operator for a nonlinear capacitor or parallel interconnections

of a nonlinear capacitor in series with an LTI system, reminiscent of the structure of deep neural

networks, is reserved for future work. Demonstrating such results will hopefully reveal what

systems are realizable from nonlinear elements. Finally, defining nonlinear Hankel operators for

the Hodgkin-Huxley model and analyzing its cyclic monotonicity would be a test of the credence

of nonlinear relaxation as a route forward in conductance-based modeling and neuromorphic

engineering.
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