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Abstract— Vision-language-action (VLA) models trained on
large-scale internet data and robot demonstrations have the
potential to serve as generalist robot policies. However, despite
their large-scale training, VLAs are often brittle to task-
irrelevant visual details such as distractor objects or background
colors. We introduce Bring Your Own VLA (BYOVLA): a
run-time intervention scheme that (1) dynamically identifies
regions of the input image that the model is sensitive to, and (2)
minimally alters task-irrelevant regions to reduce the model’s
sensitivity using automated image editing tools. Our approach
is compatible with any off the shelf VLA without model fine-
tuning or access to the model’s weights. Hardware experiments
on language-instructed manipulation tasks demonstrate that
BYOVLA enables state-of-the-art VLA models to nearly retain
their nominal performance in the presence of distractor objects
and backgrounds, which otherwise degrade task success rates
by up to 40%.

I. INTRODUCTION

A longstanding goal in robotics is to develop generalist
robot policies that can be instructed on the fly to perform tasks
in diverse environments. Recently, vision-language-action
(VLA) models trained with a combination of large-scale
internet data and robot demonstrations have shown promise
towards such generalization [1, 2, 3,4]. These models leverage
their internet-scale training to perform a broad range of
visuomotor control tasks when prompted via natural language.

However, while existing VLAs show broad fask general-
ization, they fall short of their promise as generalist policies
in terms of variations in environments. Due to the complexity
of real-world scenarios and the lack of robotic data at scale,
state-of-the-art VLAs are brittle against marginal variations
in the environments they were trained on. In particular, prior
work [1,2,3,5] and our experiments (Sec. IV) have shown
a lack of visual generalization; a small number of distractor
objects or a mere change of background color, which leave
the inherent task difficulty invariant, can drastically lower
the task success rates of VLAs.

While further scaling up data can potentially mitigate such
performance drops, the effort required to collect such data
and the computational resources required to fine-tune large
VLAs (often with billions of parameters) is a strong deterrent.
Can we design a lightweight and model-agnostic tool that
does not alter the model weights, yet still improves robustness
of VLAs to task-irrelevant objects and backgrounds?
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Contributions. To this end, we propose Bring Your
Own VLA (BYOVLA): a run-time intervention scheme that
improves visual generalization of off the shelf VLAs by
minimally altering regions in the VLA’s visual inputs in order
to reduce sensitivity against visual distractors. The key idea
is to identify (at run-time) which regions of the visual input
the model is sensitive to using a visual sensitivity probe that
perturbs different segments of the visual input. BYOVLA
queries a vision-language model (VLM) to identify which
regions in the environment are task-irrelevant and alters a
region using automated image editing tools (e.g., inpainting
a distractor object) if the region is task-irrelevant and the
VLA is sensitive to it (Fig. 1).

BYOVLA can be applied to any VLA model without fine-
tuning or access to the model’s weights. Across multiple
language-instructed manipulation tasks and varying distractor
objects and backgrounds, BYOVLA improves task success
rates by 20 — 40% compared to the original VLA, while also
significantly improving performance relative to baselines that
perform run-time interventions (1) without accounting for the
model’s visual sensitivity or (2) assessing sensitivity via prior
image attribution methods (e.g., GradCAM [6]).

II. RELATED WORK
A. Vision-Language-Action (VLA) models

Building upon progress in foundation models for lan-
guage and vision [7], recent years have seen the rise of
generalist vision-language-action (VLA) models [1,2,3,5, 8]
which show early promise in performing diverse tasks when
prompted via natural language. This success has been enabled
by a combination of existing internet data and large-scale
efforts towards collecting human demonstration datasets such
as Open X-Embodiment [4] and DROID [9].

Nevertheless, the complexity of real-world scenarios still
overwhelms the amount of data available, and state-of-the-art
generalist VLAs are often brittle against minor visual changes
to the scene, such as the introduction of task-irrelevant objects
or differing backgrounds. For instance, [5] demonstrates that
Octo [3] — a recently proposed VLA trained on Open X-
Embodiment data — has its task success rate dropped from
60% to 29% in visual generalization tasks consisting of object
distractions and unseen object appearances or backgrounds.

B. Improving policy robustness to visual distractors

There have been multiple lines of research for ameliorating
the effect of visual distractors on a policy’s performance. A
straightforward and widely used method is to apply large-scale
domain randomization to the visual observation [10, 11], often
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Fig. 1: We introduce BYOVLA: a simple and lightweight run-time intervention scheme for improving the performance of an
arbitrary VLA model in the presence of task-irrelevant distractions. Our method identifies task-irrelevant regions in the visual
observation and minimally modifies regions that the model is sensitive to in order to reduce sensitivity to distractors.

in the form of random noise or simple image manipulation
such as cropping and translating. Recently, automated image
editing tools (e.g., inpainting) have been used to generate
diverse and more realistic backgrounds and object textures
for data augmentation [12, 13, 14, 15]. These methods all
apply such randomization during training, whereas BYOVLA
operates at run-time only and does not alter the model weights.

Another technique is to simply mask out the background
and possibly the irrelevant objects in the scene, either
by learning a masking module end-to-end [16] or using
the segmentation object mask [17, 18, 19]. However, simple
masking can make unrealistic observations which the model
is subsequently trained on. A recent work [20] uses a VLM
to determine the relevant objects in the scene based on
the task instruction, but again masks out task-irrelevant
regions and requires training with both the original and
edited images. BYOVLA does not require model re-training,
and applies selective masking based on model sensitivity.
As current inpainting tools are imperfect, such minimal
edits help mitigate artifacts potentially generated by the
image editing process, keeping the transformed observations
relatively realistic (as Fig. 1 shows).

To our knowledge, [21] is the only other work that solely
performs run-time interventions of the camera observation
for robot manipulation policies, but does not address visual
distractions. Rather they focus on ensuring that fask-relevant
objects are within the training distribution by inpainting novel
ones with those seen during training.

Other training strategies for improving model robustness
include creating bottlenecks in the attention mechanism
[22,23] of the policy architecture to train the policy to
selectively focus on objects [24,25]. Similar attention ef-

fects can also be achieved using information bottlenecks
[26,27] or bisimulation-based state abstractions [28,29] for
learning visual representations that only encode task-relevant
information. Again these methods all require altering the
training pipeline and are thus not compatible with VLAs off
the shelf, unlike BYOVLA.

C. Determining the task-relevant elements in the scene

As discussed above, previous work has investigated using
VLMs [20] or learning an end-to-end module [16] to
determine the task-irrelevant elements in the scene. BYOVLA
also leverages the rich prior knowledge of VLMs to identify
regions of the scene that are irrelevant, but visually manipu-
lates them only if the model is sensitive to them.

Our use of model sensitivity is also related to multiple
attribution methods — usually used in image classification
settings — that seek to determine which part of the image
(input) are most responsible for the model’s output. Methods
like SHAP [30] and LIME [31] determine how each input
feature contributes to the output by learning a small model or
a few parameters. Gradient-based methods such as GradCAM
[6] and SmoothGrad [32] compute how the model output
changes as parts of the input observation are perturbed. How-
ever, these methods tend to be brittle and unreliable [33, 34];
specifically, the results can be sensitive to implementation
details, such as the specific layer of the model network with
respect to which the gradient is computed, or they may be
entirely incorrect. In contrast, the visual sensitivity probe
we introduce in Sec. III directly measures changes in action
outputs by perturbing different segments of the visual input.
As our experiments in Sec. IV show, determining sensitivity
using GradCAM does not retain the base model’s nominal
performance in the presence of distractions.



Algorithm 1 Bring Your Own VLA (BYOVLA)

Require: VLA model f, observation o, language instruction
{, threshold 7
R+ < TASK-IRRELEVANT REGIONS(0;)
(at, .. aevr,) < f(or,1)
Initialize ps(0:) = o4
for each region r € R; do
0t < PERTURB REGION(oy, T)
(dtv NN 7dt+Ta) ~ f(ét, l)
Ay(og,r) < Eq. (2) > Calculate visual sensitivity
if A¢(os,7) > 7 then
py(o:) < IMAGE EDITOR(pf(0¢), )
end if
end for
return p(o;)

III. METHODOLOGY
A. Problem formulation

Our goal is to improve the performance of a pre-trained
VLA operating in environments with task-irrelevant visual
distractions. We consider policies f(o¢,!) that take a language
instruction [ as input in order to perform a visuomotor control
task using RGB image observations o;. In contrast to prior
work (Sec. II), we propose a purely run-time intervention
that does not require any model fine-tuning or access to the
model’s weights. More formally, our goal is to process the
raw observation o, to produce a new observation py(o;) that
is then sent as input to the VLA to produce an action chunk
(sequence):

~7at+Ta) ~ f(pf(ot)al)a (1)

where Ty, is the action prediction horizon.

The run-time intervention p; manipulates regions of o;
that f is sensitive to but that are irrelevant to the task at hand,
with the objective of recovering the nominal performance of
the VLA in the absence of visual distractors. We describe
our pipeline for implementing ps in detail below.

(a. .

B. Bring Your Own VLA

Fig. 1 and Algorithm 1 provide an overview of our
approach. Given a language instruction [ and an initial
observation og, we first query a vision-language model (VLM)
in order to identify visual regions that are irrelevant to the
task. At each time-step ¢ during policy execution, we then use
a segmentation model to obtain corresponding masks for these
irrelevant regions. A key component of our approach is to
introduce a visual sensitivity probe in order to identify which
irrelevant segments the VLA f is sensitive to. The final
processed observation ps(o;) is obtained by manipulating
irrelevant regions (e.g., inpainting an object or changing the
color of a background region) using automated image editing
tools. We describe each of these components below.

Step 1: Localize task-irrelevant objects. Semantic in-
formation about an image is readily captured by VLMs
[35,36], which we utilize to determine what regions in the

initial image o¢ are task-irrelevant. We run the state-of-the-art
GPT4-0 model from OpenAl and prompt the model with few-
shot exemplars (image observations paired with irrelevant
regions in text). The output from GPT4-o is a string of region
proposals in oy deemed task-irrelevant. The proposals are
then provided to a segmentation model, Grounded-SAM?2
[37,38,39,40], to localize and partition the regions at the
pixel-level at every step of the rollout. Fig. 1 depicts the
outputs at each stage of the process. We consider static
environments in our experiments, and thus GPT4-o is called
once at initialization and the string of region proposals for
the grounded segmentation model is held invariant during
task execution.

Step 2: Apply visual sensitivity probe. Given a set R
of task-irrelevant regions from the VLM and segmentation
model, we determine which of these impact the output
of the VLA f. We quantify the sensitivity of f to a
region r € R; by perturbing the image in that segment to
obtain 0, and measuring the change in actions. Specifically,
let (a¢,...,atr1,) ~ f(ot,1) denote the predicted action
chunk for the original observation o;. Here, each action
in the chunk corresponds to (x,y, z, ¢, 6,1, g): the relative
displacements of the end-effector in translation and rotation,
along with a gripper open/close state. Let (ay,...,ai+7,)
denote the action chunk for a perturbed observation oy.
After applying a single perturbation to region r using a
perturbation distribution described below, we sample K
action chunks {(af,...,ay, , )}/_,. Additionally sampling
K action chunks {(ay,...,af 5 )}, from the original
image, we then compute an average weighted Lo-norm of
the difference in actions Aay,, = af,, — ay,, (where
t'e{0,....,Ta}):

Ay(og,r) =

K Ta
KlT ZZ \/<wAa'?+t"Aa’f+t/>a 2

¢ k=1t'=0

where w € R” is a user-defined weighting vector. To perturb
an image, we consider Gaussian blurring (smoothening)
object distractions and adding Gaussian noise to background
distractions for reasons explained below.

Determining the sensitivity threshold. If the quantity
Ay (o, r) in Eq. (2) is greater than a threshold 7 for a region
r from the segmentation model, we intervene on that region.
To determine 7 for object distractions, we utilize the first
observation from 50 environments in BridgeV2 and apply
Gaussian blurring to the task-irrelevant object regions in the
image following Step 1 above. Computing Eq. (2) with w as
the indicator function for translational components, and then
taking the third quartile, we arrive at a value of approximately
0.004m. Since different environments in BridgeV2 are of
different physical scales, we adjust the threshold by rolling
out a few trials in our kitchenette, arriving at a threshold
value for object distractors of 7 = 0.002m.

For background distractions, we repeat the same procedure
and arrive at a threshold of 7 = 0.001m. We add Gaussian
noise to the the RGB channels of the observation, instead
of Gaussian blurring, as we find blurring too weak to cause



a substantial deviation in trajectories for these regions. The
values for 7 described above are used for all experiments.

Step 3: Transform the image. The specific image transfor-
mation is dependent upon whether the region is classified as
an object or background distraction, which can be determined
by the VLM. If the region is an object distraction, a vision
model capable of inpainting is called to remove it from the
image; in our experiments, we use Inpaint Anything [41].

If the region is a background distraction, the RGB pixels in
that region are simply altered such that A¢(o;,7) < 7. Recall
the intuition that we would like the transformed observation
to better match the training data. Since the distribution of
colors seen during training is hard to specify a priori, we
choose a random, neutral color to inpaint the background
region with, recalculate Eq. (2) for the inpainted image and
inpainted-plus-noised image, and repeat until Af(os,7) is
below the threshold.

IV. EXPERIMENTS

We evaluate BYOVLA with two state-of-the-art open-
source. VLA models: Octo-Base [3] (93M parameter
transformer-based diffusion policy) and OpenVLA [5] (7B
parameter transformer-based autoregressive policy). The tasks
considered are "put the carrot on yellow plate” and "put
the eggplant in the pot," which take place in a toy kitchen
environment from the BridgeData V2 dataset [42] and are
the representative tasks used for evaluation in [3] and [5].

Environments and hardware setup. In our experiments,
we consider object and background environmental distractions.
Object distractions include items commonly found in
a kitchen environment but which are irrelevant for task
completion. Importantly, object distractions do not affect
the trajectory required by the robot to reach the goal state.
In each task, 5-7 object distractions are added to the domain;
these objects are selected from the BridgeData V2 catalog of
objects and are thus not adversarial in nature. Background
distractions include changes to the appearance of the scene
background that are irrelevant to the task. Fig. 2 depicts object
and background distractions in our kitchen environment for
the task "put the carrot on yellow plate": addition of an
"orange fruit" is an object distraction whereas changing the
tiling color to yellow is a background distraction. In general,
distractions are chosen to be realistic while weakening VLA
performance in order to assess the benefits of BYOVLA.

Following the hardware experiments from Octo [3] and
OpenVLA [5], all policies are evaluated on the Widow X
2508 robotic arm in accordance with the setup prescribed
by [42]. Camera angles and object/background distractions
are held constant during all trials. A threshold of 0.7 for
the gripper state is set to determine when to open or close
the end-effector. The Widow X is initialized at the same
position above the task object; consequently, w is kept as the
indicator function for translational components in Eq. (2)
for all experiments, the rationale being that we find rotational
and gripper commands insignificant to task success if the
robot starts from this position. In accordance with [3] and
[5], the task object’s initial position is varied 1-3cm from a

central position between trials. Unless otherwise stated, 15
trials for all baselines are completed.

Run-time. In general, the overhead incurred by BYOVLA
is reliant on (1) the inference speed of the underlying
foundation models and (2) the number of task-irrelevant
regions to manipulate. Queries to the VLM (GPT4-o0) for
determining task-irrelevant objects on average take less than
three seconds to complete and cost less than one cent with
five few-shot exemplars; we assume static environments, so
this query is executed once at the beginning of the episode.
Irrespective of inpainting, Octo-Base and OpenVLA run at
13Hz and 6Hz, respectively, on a NVIDIA GeForce RTX
4090 GPU [3, 5], which we used in our experiments. In our
(object distraction) experiments with Octo, Steps 1-3 above,
without calling GPT4-o, take roughly 2 seconds to complete.
All time measurements were averaged over 15 trials.
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Fig. 2: First row: task success rates for BYOVLA with Octo
on language instruction "place the carrot on yellow plate."
Second row: kitchenette environment from BridgeV2 dataset
with and without object and background distractions.

Baselines. We evaluate BYOVLA against these baselines:
(1) the original VLA policy; (2) BYOVLA without the visual
sensitivity probe — labeled in Figs. 2 — 4 as BYOVLA \Sens.
— where we manipulate all regions of the image deemed task-
irrelevant by the VLM. For our experiments with Octo, we
consider (3) a GradCAM-based [6] baseline, where we replace
our visual sensitivity probe with GradCAM to attribute what
regions in the image are most important for model output and
manipulate those regions if they are deemed task-irrelevant by
the VLM. In particular, we calculate the cross-attention values
and gradients between the image and task tokens, which we
then average across the attention heads and task tokens. We
perform this operation halfway through the overall transformer
architecture (layer 6 in Octo-Base), which is motivated by
recent work in mechanistic interpretability suggesting that
intermediate layers of transformer-based architectures contain
salient features [43,44,45,46]. To determine which image
regions to manipulate, we compute the difference between
maximal and minimal GradCAM scores and retain the pixel
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cup, but fails the task. GradCAM fails to capture the model sensitivity to most irrelevant objects and thus also fails.

locations corresponding to the top quarter fraction. See Fig. 3
for an example of the regions deemed salient.

We few-shot prompt GPT4-o0 with five in-context examples
including an image containing our kitchenette environment
with distractions, along with a list of the task-irrelevant
regions in the image. At run-time, we only query GPT4-o with
the initial observation o; and ask for the task-irrelevant regions.
In principle, the distinction between an object and background
distraction can be determined by GPT4-o. However, in our
experiments, we consider the effect of object and background
distractions separately, and hence do not prompt GPT4-
o to distinguish between them. Unless stated otherwise,
determination of task-irrelevant regions with GPT4-o and
visual sensitivity probing is done once at initialization and
fixed throughout the episode. While one can easily perform
these operations at every step, our experiments for the tasks
considered in this work demonstrate no additional benefit
(see Fig. 2). We discuss this further in Sec. V. Additional
experimental details, including the GPT4-o0 few-shot prompt
template and GradCAM calculation, among others, may be
found in the extended version of this work [47].

A. Evaluation with Octo-Base

Task and distractors. BYOVLA is first evaluated with
Octo-Base on the task "place the carrot on yellow plate." The
bottom images of Fig. 2 depict the environmental distractions
present in the kitchenette environment. The left scene depicts
the environment without distractions, and the middle scene
showcases five task-irrelevant objects: orange, blue towel,
knife, green cup, and donut. The rightmost scene demonstrates
the yellow tiling background distraction mentioned previously.

Implementation details. For the object distractor experi-
ments, 30 trials are completed for each baseline. For visual
sensitivity probing, we Gaussian blur object regions with a

kernel size of 25, and add Gaussian noise 7 ~ N(0,1/0.075)
to the RGB channels for background regions. The threshold
is set to 7 = 2mm for objects and 7 = 1mm for background
regions for reasons described in Sec. III. We transform the
input image with a warm filter in order to better match our
physical operating conditions to Octo’s training environments.
We utilize the full extent of Octo’s action chunking capability
(T, = 3), which we find most effective for achieving the
baseline success rate reported in [3, Appendix]. In calculating
Eq. (2), K =5 rollouts are sampled.

Results. As Fig. 2 shows, task-irrelevant object distractions
drop Octo-Base’s success rate by 40%. Manipulating the
image via inpainting following GradCAM or BYO VLA \ Sens
fails to retain the nominal task success rate of 67% without
distractions present, whereas BYOVLA is able to.

With object distractions, we investigate whether applying
the visual sensitivity probe at every step with subsequent
image manipulation, denoted by "-Full", offers any additional
benefit over determining sensitivity at initialization only:
Fig. 2 suggests not, which we hypothesize is due to the
static environments and relatively simple tasks considered.
While we anticipate updating model sensitivity will offer
benefit in dynamic environments, unless otherwise stated, we
only run the visual sensitivity probe at the initial time-step.

For background distractions, a similar trend in performance
is observed. In this case, the GradCAM baseline slightly
outperforms Octo-Base and BYOVLA achieves the best
performance, raising Octo’s task success rate by ~25%.

In general, the most common failure modes observed across
all distractions and all baselines, BYOVLA included, are early
grasping of the task object and missing the task object upon
approach (see Fig. 3). These failure modes are especially
reflective of the effect of distractions since we only vary the



initial position of the task object by 1-3cm from its central
location between trials. Since this variation is smaller than
the gripper’s width when open, it highlights the deleterious
effect distractions have on the policy.

The improvement of BYOVLA over BYOVLA\Sens.
is likely attributable to the presence of distractors in the
training data, e.g., the BridgeV2 dataset, which forms a
significant portion of Octo’s training data. By removing all
such distractions from the input image, the distribution shift
induced by inpainting is likely responsible for the policy’s
failure. On the other hand, we find that GradCAM is not
attending to all regions relevant for Octo’s output; otherwise,
the success rate would have approached the nominal. The
trial in Fig. 3 depicts results in a failed trajectory due to an
early grasp of the object when inpainting what GradCAM
says Octo is sensitive to, whereas running BYOVLA results
in a successful trajectory.

B. Evaluation with OpenVLA

Task and distractors. We next study BYOVLA with
OpenVLA on the task "put the eggplant in the pot," where we
seek to answer two questions: (1) to what extent is BYOVLA
model-agnostic, and (2) can BYOVLA offer any benefit to
policies that build on vision-language models pretrained on
large-scale internet data? We again utilize distractor objects
from the BridgeV2 dataset, which accounts for roughly a
sixth of total data that OpenVLA was trained on [5]. The
rightmost image in Fig. 4 depicts the task-irrelevant objects:
three silver lids, olive-oil, black pepper, grapes, and a pink
plate. Brown bricks are chosen to contrast the original white
tiling as a background distraction.

Implementation details. Object (background) regions are
again Gaussian blurred (Gaussian noised) for visual sensitivity
probing with a threshold of 7 = 2mm for objects and
7 = 1mm for background regions (identical to the Octo
experiments). Unlike Octo, OpenVLA does not action-chunk
its commands. Moreover, unlike Octo that uses a diffusion
policy and outputs stochastic action chunks, OpenVLA
deterministically outputs the autoregressed action; therefore,
only one rollout (K = 1) is used for evaluating Eq. (2).

Results. As Fig. 4 shows, while OpenVLA nominally
achieves a perfect task success rate, the presence of dis-
tractions dropped its performance by 40%. BYOVLA and
its variant BYOVLA \Sens. both improve the baseline per-
formance by 20-25% in the presence of distractions. The
most common failure mode observed for OpenVLA across
all baselines, BYOVLA included, is the tendency to not
command any changes in position after successfully grasping
the task object, e.g., not lifting the eggplant off the stove.

While BYOVLA does not retain the nominal success rate
of OpenVLA with distractions, the environment depicted in
Fig. 4 is significantly more cluttered than the environment
for Octo’s experiments. We find that even with few-shot
prompting, GPT4-o often fails to locate all task-irrelevant
objects, namely the lids located on the stovetop; this likely
contributes to BYOVLA not reattaining OpenVLA’s nominal
performance.

Object and Background Distractions

Without With
Distractions Distractions
1.0

Success rate

B OpenVLA N BYOVLA\ Sens.
s OpenVLA BYOVLA

Fig. 4: First column: task success rates for BYOVLA with
OpenVLA on language instruction "put the eggplant in the
pot." Second column: kitchenette environment from BridgeV2
dataset with distractions.

V. CONCLUSION AND DISCUSSIONS

We present BYOVLA: a run-time intervention scheme
that dynamically determines task-irrelevant regions that an
arbitrary VLA is sensitive to and minimally alters the
image with automated image editing tools to improve policy
performance in the presence of object and background
distractions. BYOVLA is applicable off the shelf and does
not require access to the VLA’s weights. Experiments show
that BYOVLA allows VLAs to nearly retain their nominal
performance in the presence of task-irrelevant distractors,
which otherwise drop the task success rate by up to 40%.

Limitations and future work: The success of BYOVLA
is reliant upon orchestrating different foundation models into a
common pipeline, which presents challenges with integration.
One limitation of our approach is the distinction between
object and background distractions; while VLMs like GPT4-o0
can in principle discern between the two, our experiments
primarily focus on cases where objects and backgrounds
are separated to maximize the performance of GPT4-o in
determining task-irrelevant regions. We expect that as VLMs
become more capable, this aspect of BYOVLA improves.

Moreover, the regions proposed by the VLM are not
guaranteed to be found with a separately trained segmentation
model, and the choice of threshold 7 is a hyperparameter of
our method that requires a few real-world deployments to
fine-tune for best results. Future work will consider how to
better choose a threshold for a given environment, e.g., using
conformal prediction [48,49] to bound the false positive rate
of detecting sensitive regions. In addition, we plan to explore
more sophisticated inpainting schemes for background regions
that seek to replace the background at deployment time with
backgrounds from the VLA’s training data. Finally, we only
consider static environments in this work and plan to apply
BYOVLA in dynamic environments, e.g., with a mobile
robot or human behavior in the scene, where task-relevancy
may change during policy execution. Therein, we expect that
running the entire pipeline of BYOVLA at every time-step
will offer advantages not capitalized on here.

Overall, we believe that run-time interventions — as a
form of test-time compute — represent an underexplored
avenue for significantly improving the base capabilities of
VLAs without additional training, and we hope that the work
presented here spurs further research in this area.
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