
Run-time Observation Interventions
Make Vision-Language-Action Models More Visually Robust

Asher J. Hancock1, Allen Z. Ren1, and Anirudha Majumdar1

Abstract— Vision-language-action (VLA) models trained on
large-scale internet data and robot demonstrations have the
potential to serve as generalist robot policies. However, despite
their large-scale training, VLAs are often brittle to task-
irrelevant visual details such as distractor objects or background
colors. We introduce Bring Your Own VLA (BYOVLA): a
run-time intervention scheme that (1) dynamically identifies
regions of the input image that the model is sensitive to, and (2)
minimally alters task-irrelevant regions to reduce the model’s
sensitivity using automated image editing tools. Our approach
is compatible with any off the shelf VLA without model fine-
tuning or access to the model’s weights. Hardware experiments
on language-instructed manipulation tasks demonstrate that
BYOVLA enables state-of-the-art VLA models to nearly retain
their nominal performance in the presence of distractor objects
and backgrounds, which otherwise degrade task success rates
by up to 40%.

I. INTRODUCTION

A longstanding goal in robotics is to develop generalist
robot policies that can be instructed on the fly to perform tasks
in diverse environments. Recently, vision-language-action
(VLA) models trained with a combination of large-scale
internet data and robot demonstrations have shown promise
towards such generalization [1, 2, 3, 4]. These models leverage
their internet-scale training to perform a broad range of
visuomotor control tasks when prompted via natural language.

However, while existing VLAs show broad task general-
ization, they fall short of their promise as generalist policies
in terms of variations in environments. Due to the complexity
of real-world scenarios and the lack of robotic data at scale,
state-of-the-art VLAs are brittle against marginal variations
in the environments they were trained on. In particular, prior
work [1, 2, 3, 5] and our experiments (Sec. IV) have shown
a lack of visual generalization; a small number of distractor
objects or a mere change of background color, which leave
the inherent task difficulty invariant, can drastically lower
the task success rates of VLAs.

While further scaling up data can potentially mitigate such
performance drops, the effort required to collect such data
and the computational resources required to fine-tune large
VLAs (often with billions of parameters) is a strong deterrent.
Can we design a lightweight and model-agnostic tool that
does not alter the model weights, yet still improves robustness
of VLAs to task-irrelevant objects and backgrounds?

*This work was partially supported by the NSF CAREER Award
[#2044149] and the Office of Naval Research [N00014-23-1-2148]. Asher
Hancock was supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-2146755.

1Dept. of Mechanical & Aerospace Engineering, Princeton University.
Contact: ajhancock@princeton.edu.

Contributions. To this end, we propose Bring Your
Own VLA (BYOVLA): a run-time intervention scheme that
improves visual generalization of off the shelf VLAs by
minimally altering regions in the VLA’s visual inputs in order
to reduce sensitivity against visual distractors. The key idea
is to identify (at run-time) which regions of the visual input
the model is sensitive to using a visual sensitivity probe that
perturbs different segments of the visual input. BYOVLA
queries a vision-language model (VLM) to identify which
regions in the environment are task-irrelevant and alters a
region using automated image editing tools (e.g., inpainting
a distractor object) if the region is task-irrelevant and the
VLA is sensitive to it (Fig. 1).

BYOVLA can be applied to any VLA model without fine-
tuning or access to the model’s weights. Across multiple
language-instructed manipulation tasks and varying distractor
objects and backgrounds, BYOVLA improves task success
rates by 20− 40% compared to the original VLA, while also
significantly improving performance relative to baselines that
perform run-time interventions (1) without accounting for the
model’s visual sensitivity or (2) assessing sensitivity via prior
image attribution methods (e.g., GradCAM [6]).

II. RELATED WORK

A. Vision-Language-Action (VLA) models

Building upon progress in foundation models for lan-
guage and vision [7], recent years have seen the rise of
generalist vision-language-action (VLA) models [1, 2, 3, 5, 8]
which show early promise in performing diverse tasks when
prompted via natural language. This success has been enabled
by a combination of existing internet data and large-scale
efforts towards collecting human demonstration datasets such
as Open X-Embodiment [4] and DROID [9].

Nevertheless, the complexity of real-world scenarios still
overwhelms the amount of data available, and state-of-the-art
generalist VLAs are often brittle against minor visual changes
to the scene, such as the introduction of task-irrelevant objects
or differing backgrounds. For instance, [5] demonstrates that
Octo [3] — a recently proposed VLA trained on Open X-
Embodiment data — has its task success rate dropped from
60% to 29% in visual generalization tasks consisting of object
distractions and unseen object appearances or backgrounds.

B. Improving policy robustness to visual distractors

There have been multiple lines of research for ameliorating
the effect of visual distractors on a policy’s performance. A
straightforward and widely used method is to apply large-scale
domain randomization to the visual observation [10, 11], often

BYOVLA: Bring Your Own Vision-Language-Action Model

“Place the corn
in the pan”

(mention
inpainting)

Step 1

[sink, bottle,
olive oil,

yellow wall]

Locate regions with
segmentation model

object background

Perturbed
regions

BYOVLA: Bring Your Own Vision-Language-Action Model

Input:
Task: place the
corn in the pan

Transformed image
for VLA model

Output: Visual Sens. Probe
Determine

sensitive regions

VLM
Find task-

irrelevant regions

[sink, bottle, olive-
oil, yellow wall]

Seg. Model
Provide feature

masks
object background

Perturb regions

Off-the-shelf VLA

More robust to
visual distractions

Off-the-shelf VLA

Brittle to
visual distractions

Original image Inpainted image

Off-the-shelf VLA

Step 2 Perturb individual regions Run-time only

No training needed

BYOVLA: Bring Your Own Vision-Language-Action Model

“Place the corn
in the pan”

(mention
inpainting)

Step 1
Find task-irrelevant
regions with VLM

[sink, bottle,
olive oil,

yellow wall]

Step 2
Extract masks with

segmentation model
object background

(Final image) Robust
to visual distractors

Off-the-shelf VLA

(Final image)
Failure

Original image Inpainted image

Off-the-shelf VLA

Step 3
Determine sensitive regions

Run-time only

No training needed

Sensitive

Not sensitive

perturbed wall

perturbed oil
perturbed sink
perturbed bottle

original
perturbed wall

perturbed oilY

X

perturbed sink

Perturbed bottle

Perturbed regions

Perturb regions

Step 3
Determine sensitive regionsMore

sensitive
Less

sensitive

Infer VLA actions with perturbed images

Threshold
sensitive regions

Inpaint regions

original

perturbed wall

perturbed oil

Y
direction

X direction

perturbed sink

perturbed
bottle

Step 3 Inpaint sensitive regions

…

Close to
original

Deviated

Threshold

Sink Wall

Original action

Step 2

Find task-irrelevant
regions with VLM

Actions after perturbing
individual region

Fig. 1: We introduce BYOVLA : a simple and lightweight run-time intervention scheme for improving the performance of an
arbitrary VLA model in the presence of task-irrelevant distractions. Our method identifies task-irrelevant regions in the visual
observation and minimally modifies regions that the model is sensitive to in order to reduce sensitivity to distractors.

in the form of random noise or simple image manipulation
such as cropping and translating. Recently, automated image
editing tools (e.g., inpainting) have been used to generate
diverse and more realistic backgrounds and object textures
for data augmentation [12, 13, 14, 15]. These methods all
apply such randomization during training, whereas BYOVLA
operates at run-time only and does not alter the model weights.

Another technique is to simply mask out the background
and possibly the irrelevant objects in the scene, either
by learning a masking module end-to-end [16] or using
the segmentation object mask [17, 18, 19]. However, simple
masking can make unrealistic observations which the model
is subsequently trained on. A recent work [20] uses a VLM
to determine the relevant objects in the scene based on
the task instruction, but again masks out task-irrelevant
regions and requires training with both the original and
edited images. BYOVLA does not require model re-training,
and applies selective masking based on model sensitivity.
As current inpainting tools are imperfect, such minimal
edits help mitigate artifacts potentially generated by the
image editing process, keeping the transformed observations
relatively realistic (as Fig. 1 shows).

To our knowledge, [21] is the only other work that solely
performs run-time interventions of the camera observation
for robot manipulation policies, but does not address visual
distractions. Rather they focus on ensuring that task-relevant
objects are within the training distribution by inpainting novel
ones with those seen during training.

Other training strategies for improving model robustness
include creating bottlenecks in the attention mechanism
[22, 23] of the policy architecture to train the policy to
selectively focus on objects [24, 25]. Similar attention ef-

fects can also be achieved using information bottlenecks
[26, 27] or bisimulation-based state abstractions [28, 29] for
learning visual representations that only encode task-relevant
information. Again these methods all require altering the
training pipeline and are thus not compatible with VLAs off
the shelf, unlike BYOVLA .

C. Determining the task-relevant elements in the scene
As discussed above, previous work has investigated using

VLMs [20] or learning an end-to-end module [16] to
determine the task-irrelevant elements in the scene. BYOVLA
also leverages the rich prior knowledge of VLMs to identify
regions of the scene that are irrelevant, but visually manipu-
lates them only if the model is sensitive to them.

Our use of model sensitivity is also related to multiple
attribution methods — usually used in image classification
settings — that seek to determine which part of the image
(input) are most responsible for the model’s output. Methods
like SHAP [30] and LIME [31] determine how each input
feature contributes to the output by learning a small model or
a few parameters. Gradient-based methods such as GradCAM
[6] and SmoothGrad [32] compute how the model output
changes as parts of the input observation are perturbed. How-
ever, these methods tend to be brittle and unreliable [33, 34];
specifically, the results can be sensitive to implementation
details, such as the specific layer of the model network with
respect to which the gradient is computed, or they may be
entirely incorrect. In contrast, the visual sensitivity probe
we introduce in Sec. III directly measures changes in action
outputs by perturbing different segments of the visual input.
As our experiments in Sec. IV show, determining sensitivity
using GradCAM does not retain the base model’s nominal
performance in the presence of distractions.

Algorithm 1 Bring Your Own VLA (BYOVLA)

Require: VLA model f , observation ot, language instruction
l, threshold τ
Rt ← TASK-IRRELEVANT REGIONS(ot)
(at, . . . , at+Ta)← f(ot, l)
Initialize ρf (ot) = ot
for each region r ∈ Rt do

õt ← PERTURB REGION(ot, r)
(ãt, . . . , ãt+Ta) ∼ f(õt, l)
∆f (ot, r)← Eq. (2) ▷ Calculate visual sensitivity
if ∆f (ot, r) ≥ τ then

ρf (ot)← IMAGE EDITOR(ρf (ot), r)
end if

end for
return ρf (ot)

III. METHODOLOGY

A. Problem formulation

Our goal is to improve the performance of a pre-trained
VLA operating in environments with task-irrelevant visual
distractions. We consider policies f(ot, l) that take a language
instruction l as input in order to perform a visuomotor control
task using RGB image observations ot. In contrast to prior
work (Sec. II), we propose a purely run-time intervention
that does not require any model fine-tuning or access to the
model’s weights. More formally, our goal is to process the
raw observation ot to produce a new observation ρf (ot) that
is then sent as input to the VLA to produce an action chunk
(sequence):

(at, . . . , at+Ta
) ∼ f(ρf (ot), l), (1)

where Ta is the action prediction horizon.
The run-time intervention ρf manipulates regions of ot

that f is sensitive to but that are irrelevant to the task at hand,
with the objective of recovering the nominal performance of
the VLA in the absence of visual distractors. We describe
our pipeline for implementing ρf in detail below.

B. Bring Your Own VLA

Fig. 1 and Algorithm 1 provide an overview of our
approach. Given a language instruction l and an initial
observation o0, we first query a vision-language model (VLM)
in order to identify visual regions that are irrelevant to the
task. At each time-step t during policy execution, we then use
a segmentation model to obtain corresponding masks for these
irrelevant regions. A key component of our approach is to
introduce a visual sensitivity probe in order to identify which
irrelevant segments the VLA f is sensitive to. The final
processed observation ρf (ot) is obtained by manipulating
irrelevant regions (e.g., inpainting an object or changing the
color of a background region) using automated image editing
tools. We describe each of these components below.

Step 1: Localize task-irrelevant objects. Semantic in-
formation about an image is readily captured by VLMs
[35, 36], which we utilize to determine what regions in the

initial image o0 are task-irrelevant. We run the state-of-the-art
GPT4-o model from OpenAI and prompt the model with few-
shot exemplars (image observations paired with irrelevant
regions in text). The output from GPT4-o is a string of region
proposals in o0 deemed task-irrelevant. The proposals are
then provided to a segmentation model, Grounded-SAM2
[37, 38, 39, 40], to localize and partition the regions at the
pixel-level at every step of the rollout. Fig. 1 depicts the
outputs at each stage of the process. We consider static
environments in our experiments, and thus GPT4-o is called
once at initialization and the string of region proposals for
the grounded segmentation model is held invariant during
task execution.

Step 2: Apply visual sensitivity probe. Given a set Rt

of task-irrelevant regions from the VLM and segmentation
model, we determine which of these impact the output
of the VLA f . We quantify the sensitivity of f to a
region r ∈ Rt by perturbing the image in that segment to
obtain õt and measuring the change in actions. Specifically,
let (at, . . . , at+Ta

) ∼ f(ot, l) denote the predicted action
chunk for the original observation ot. Here, each action
in the chunk corresponds to (x, y, z, ϕ, θ, ψ, g): the relative
displacements of the end-effector in translation and rotation,
along with a gripper open/close state. Let (ãt, . . . , ãt+Ta

)
denote the action chunk for a perturbed observation õt.
After applying a single perturbation to region r using a
perturbation distribution described below, we sample K
action chunks {(ãkt , . . . , ãkt+Ta

)}Kk=1. Additionally sampling
K action chunks {(akt , . . . , akt+Ta

)}Kk=1 from the original
image, we then compute an average weighted L2-norm of
the difference in actions ∆akt+t′ := akt+t′ − ãkt+t′ (where
t′ ∈ {0, . . . , Ta}):

∆f (ot, r) :=
1

KTa

K∑
k=1

Ta∑
t′=0

√
⟨w∆akt+t′ ,∆a

k
t+t′⟩, (2)

where w ∈ R7 is a user-defined weighting vector. To perturb
an image, we consider Gaussian blurring (smoothening)
object distractions and adding Gaussian noise to background
distractions for reasons explained below.

Determining the sensitivity threshold. If the quantity
∆f (ot, r) in Eq. (2) is greater than a threshold τ for a region
r from the segmentation model, we intervene on that region.
To determine τ for object distractions, we utilize the first
observation from 50 environments in BridgeV2 and apply
Gaussian blurring to the task-irrelevant object regions in the
image following Step 1 above. Computing Eq. (2) with w as
the indicator function for translational components, and then
taking the third quartile, we arrive at a value of approximately
0.004m. Since different environments in BridgeV2 are of
different physical scales, we adjust the threshold by rolling
out a few trials in our kitchenette, arriving at a threshold
value for object distractors of τ = 0.002m.

For background distractions, we repeat the same procedure
and arrive at a threshold of τ = 0.001m. We add Gaussian
noise to the the RGB channels of the observation, instead
of Gaussian blurring, as we find blurring too weak to cause

a substantial deviation in trajectories for these regions. The
values for τ described above are used for all experiments.

Step 3: Transform the image. The specific image transfor-
mation is dependent upon whether the region is classified as
an object or background distraction, which can be determined
by the VLM. If the region is an object distraction, a vision
model capable of inpainting is called to remove it from the
image; in our experiments, we use Inpaint Anything [41].

If the region is a background distraction, the RGB pixels in
that region are simply altered such that ∆f (ot, r) < τ . Recall
the intuition that we would like the transformed observation
to better match the training data. Since the distribution of
colors seen during training is hard to specify a priori, we
choose a random, neutral color to inpaint the background
region with, recalculate Eq. (2) for the inpainted image and
inpainted-plus-noised image, and repeat until ∆f (ot, r) is
below the threshold.

IV. EXPERIMENTS

We evaluate BYOVLA with two state-of-the-art open-
source VLA models: Octo-Base [3] (93M parameter
transformer-based diffusion policy) and OpenVLA [5] (7B
parameter transformer-based autoregressive policy). The tasks
considered are "put the carrot on yellow plate" and "put
the eggplant in the pot," which take place in a toy kitchen
environment from the BridgeData V2 dataset [42] and are
the representative tasks used for evaluation in [3] and [5].

Environments and hardware setup. In our experiments,
we consider object and background environmental distractions.
Object distractions include items commonly found in
a kitchen environment but which are irrelevant for task
completion. Importantly, object distractions do not affect
the trajectory required by the robot to reach the goal state.
In each task, 5-7 object distractions are added to the domain;
these objects are selected from the BridgeData V2 catalog of
objects and are thus not adversarial in nature. Background
distractions include changes to the appearance of the scene
background that are irrelevant to the task. Fig. 2 depicts object
and background distractions in our kitchen environment for
the task "put the carrot on yellow plate": addition of an
"orange fruit" is an object distraction whereas changing the
tiling color to yellow is a background distraction. In general,
distractions are chosen to be realistic while weakening VLA
performance in order to assess the benefits of BYOVLA.

Following the hardware experiments from Octo [3] and
OpenVLA [5], all policies are evaluated on the Widow X
250S robotic arm in accordance with the setup prescribed
by [42]. Camera angles and object/background distractions
are held constant during all trials. A threshold of 0.7 for
the gripper state is set to determine when to open or close
the end-effector. The Widow X is initialized at the same
position above the task object; consequently, w is kept as the
indicator function for translational components in Eq. (2)
for all experiments, the rationale being that we find rotational
and gripper commands insignificant to task success if the
robot starts from this position. In accordance with [3] and
[5], the task object’s initial position is varied 1-3cm from a

central position between trials. Unless otherwise stated, 15
trials for all baselines are completed.

Run-time. In general, the overhead incurred by BYOVLA
is reliant on (1) the inference speed of the underlying
foundation models and (2) the number of task-irrelevant
regions to manipulate. Queries to the VLM (GPT4-o) for
determining task-irrelevant objects on average take less than
three seconds to complete and cost less than one cent with
five few-shot exemplars; we assume static environments, so
this query is executed once at the beginning of the episode.
Irrespective of inpainting, Octo-Base and OpenVLA run at
13Hz and 6Hz, respectively, on a NVIDIA GeForce RTX
4090 GPU [3, 5], which we used in our experiments. In our
(object distraction) experiments with Octo, Steps 1-3 above,
without calling GPT4-o, take roughly 2 seconds to complete.
All time measurements were averaged over 15 trials.

Fig. 2: First row: task success rates for BYOVLA with Octo
on language instruction "place the carrot on yellow plate."
Second row: kitchenette environment from BridgeV2 dataset
with and without object and background distractions.

Baselines. We evaluate BYOVLA against these baselines:
(1) the original VLA policy; (2) BYOVLA without the visual
sensitivity probe — labeled in Figs. 2 – 4 as BYOVLA\Sens.
— where we manipulate all regions of the image deemed task-
irrelevant by the VLM. For our experiments with Octo, we
consider (3) a GradCAM-based [6] baseline, where we replace
our visual sensitivity probe with GradCAM to attribute what
regions in the image are most important for model output and
manipulate those regions if they are deemed task-irrelevant by
the VLM. In particular, we calculate the cross-attention values
and gradients between the image and task tokens, which we
then average across the attention heads and task tokens. We
perform this operation halfway through the overall transformer
architecture (layer 6 in Octo-Base), which is motivated by
recent work in mechanistic interpretability suggesting that
intermediate layers of transformer-based architectures contain
salient features [43, 44, 45, 46]. To determine which image
regions to manipulate, we compute the difference between
maximal and minimal GradCAM scores and retain the pixel

Trial 6 for gradcam, Trial 2 for us

GradCAM

Sensitivity

BYOVLA

Output

GradCAM

Sensitivity

BYOVLA

BYOVLA
\Sens.

GradCAM

Sensitivity

BYOVLA

BYOVLA
\Sens.

More
sensitive

Less
sensitive

mm

mm

mm

Transformed image

Resultant
trajectories

Grasp observation Final observation

Fig. 3: First column: heatmaps showing the regions each method deems the VLA is sensitive to. Second column: inpainted
image regions with sensitivity threshold τ . BYOVLA inpaints the the blue towel, orange, and donut, and then successfully
grasps the carrot and puts it on the plate (last two columns), while BYOVLA\Sens. additionally inpaints the green knife and
cup, but fails the task. GradCAM fails to capture the model sensitivity to most irrelevant objects and thus also fails.

locations corresponding to the top quarter fraction. See Fig. 3
for an example of the regions deemed salient.

We few-shot prompt GPT4-o with five in-context examples
including an image containing our kitchenette environment
with distractions, along with a list of the task-irrelevant
regions in the image. At run-time, we only query GPT4-o with
the initial observation ot and ask for the task-irrelevant regions.
In principle, the distinction between an object and background
distraction can be determined by GPT4-o. However, in our
experiments, we consider the effect of object and background
distractions separately, and hence do not prompt GPT4-
o to distinguish between them. Unless stated otherwise,
determination of task-irrelevant regions with GPT4-o and
visual sensitivity probing is done once at initialization and
fixed throughout the episode. While one can easily perform
these operations at every step, our experiments for the tasks
considered in this work demonstrate no additional benefit
(see Fig. 2). We discuss this further in Sec. V. Additional
experimental details, including the GPT4-o few-shot prompt
template and GradCAM calculation, among others, may be
found in the extended version of this work [47].

A. Evaluation with Octo-Base

Task and distractors. BYOVLA is first evaluated with
Octo-Base on the task "place the carrot on yellow plate." The
bottom images of Fig. 2 depict the environmental distractions
present in the kitchenette environment. The left scene depicts
the environment without distractions, and the middle scene
showcases five task-irrelevant objects: orange, blue towel,
knife, green cup, and donut. The rightmost scene demonstrates
the yellow tiling background distraction mentioned previously.

Implementation details. For the object distractor experi-
ments, 30 trials are completed for each baseline. For visual
sensitivity probing, we Gaussian blur object regions with a

kernel size of 25, and add Gaussian noise η ∼ N (0,
√
0.075)

to the RGB channels for background regions. The threshold
is set to τ = 2mm for objects and τ = 1mm for background
regions for reasons described in Sec. III. We transform the
input image with a warm filter in order to better match our
physical operating conditions to Octo’s training environments.
We utilize the full extent of Octo’s action chunking capability
(Ta = 3), which we find most effective for achieving the
baseline success rate reported in [3, Appendix]. In calculating
Eq. (2), K = 5 rollouts are sampled.

Results. As Fig. 2 shows, task-irrelevant object distractions
drop Octo-Base’s success rate by 40%. Manipulating the
image via inpainting following GradCAM or BYOVLA\Sens
fails to retain the nominal task success rate of 67% without
distractions present, whereas BYOVLA is able to.

With object distractions, we investigate whether applying
the visual sensitivity probe at every step with subsequent
image manipulation, denoted by "-Full", offers any additional
benefit over determining sensitivity at initialization only:
Fig. 2 suggests not, which we hypothesize is due to the
static environments and relatively simple tasks considered.
While we anticipate updating model sensitivity will offer
benefit in dynamic environments, unless otherwise stated, we
only run the visual sensitivity probe at the initial time-step.

For background distractions, a similar trend in performance
is observed. In this case, the GradCAM baseline slightly
outperforms Octo-Base and BYOVLA achieves the best
performance, raising Octo’s task success rate by ∼25%.

In general, the most common failure modes observed across
all distractions and all baselines, BYOVLA included, are early
grasping of the task object and missing the task object upon
approach (see Fig. 3). These failure modes are especially
reflective of the effect of distractions since we only vary the

initial position of the task object by 1-3cm from its central
location between trials. Since this variation is smaller than
the gripper’s width when open, it highlights the deleterious
effect distractions have on the policy.

The improvement of BYOVLA over BYOVLA\Sens.
is likely attributable to the presence of distractors in the
training data, e.g., the BridgeV2 dataset, which forms a
significant portion of Octo’s training data. By removing all
such distractions from the input image, the distribution shift
induced by inpainting is likely responsible for the policy’s
failure. On the other hand, we find that GradCAM is not
attending to all regions relevant for Octo’s output; otherwise,
the success rate would have approached the nominal. The
trial in Fig. 3 depicts results in a failed trajectory due to an
early grasp of the object when inpainting what GradCAM
says Octo is sensitive to, whereas running BYOVLA results
in a successful trajectory.

B. Evaluation with OpenVLA

Task and distractors. We next study BYOVLA with
OpenVLA on the task "put the eggplant in the pot," where we
seek to answer two questions: (1) to what extent is BYOVLA
model-agnostic, and (2) can BYOVLA offer any benefit to
policies that build on vision-language models pretrained on
large-scale internet data? We again utilize distractor objects
from the BridgeV2 dataset, which accounts for roughly a
sixth of total data that OpenVLA was trained on [5]. The
rightmost image in Fig. 4 depicts the task-irrelevant objects:
three silver lids, olive-oil, black pepper, grapes, and a pink
plate. Brown bricks are chosen to contrast the original white
tiling as a background distraction.

Implementation details. Object (background) regions are
again Gaussian blurred (Gaussian noised) for visual sensitivity
probing with a threshold of τ = 2mm for objects and
τ = 1mm for background regions (identical to the Octo
experiments). Unlike Octo, OpenVLA does not action-chunk
its commands. Moreover, unlike Octo that uses a diffusion
policy and outputs stochastic action chunks, OpenVLA
deterministically outputs the autoregressed action; therefore,
only one rollout (K = 1) is used for evaluating Eq. (2).

Results. As Fig. 4 shows, while OpenVLA nominally
achieves a perfect task success rate, the presence of dis-
tractions dropped its performance by 40%. BYOVLA and
its variant BYOVLA\Sens. both improve the baseline per-
formance by 20-25% in the presence of distractions. The
most common failure mode observed for OpenVLA across
all baselines, BYOVLA included, is the tendency to not
command any changes in position after successfully grasping
the task object, e.g., not lifting the eggplant off the stove.

While BYOVLA does not retain the nominal success rate
of OpenVLA with distractions, the environment depicted in
Fig. 4 is significantly more cluttered than the environment
for Octo’s experiments. We find that even with few-shot
prompting, GPT4-o often fails to locate all task-irrelevant
objects, namely the lids located on the stovetop; this likely
contributes to BYOVLA not reattaining OpenVLA’s nominal
performance.

Fig. 4: First column: task success rates for BYOVLA with
OpenVLA on language instruction "put the eggplant in the
pot." Second column: kitchenette environment from BridgeV2
dataset with distractions.

V. CONCLUSION AND DISCUSSIONS

We present BYOVLA : a run-time intervention scheme
that dynamically determines task-irrelevant regions that an
arbitrary VLA is sensitive to and minimally alters the
image with automated image editing tools to improve policy
performance in the presence of object and background
distractions. BYOVLA is applicable off the shelf and does
not require access to the VLA’s weights. Experiments show
that BYOVLA allows VLAs to nearly retain their nominal
performance in the presence of task-irrelevant distractors,
which otherwise drop the task success rate by up to 40%.

Limitations and future work: The success of BYOVLA
is reliant upon orchestrating different foundation models into a
common pipeline, which presents challenges with integration.
One limitation of our approach is the distinction between
object and background distractions; while VLMs like GPT4-o
can in principle discern between the two, our experiments
primarily focus on cases where objects and backgrounds
are separated to maximize the performance of GPT4-o in
determining task-irrelevant regions. We expect that as VLMs
become more capable, this aspect of BYOVLA improves.

Moreover, the regions proposed by the VLM are not
guaranteed to be found with a separately trained segmentation
model, and the choice of threshold τ is a hyperparameter of
our method that requires a few real-world deployments to
fine-tune for best results. Future work will consider how to
better choose a threshold for a given environment, e.g., using
conformal prediction [48, 49] to bound the false positive rate
of detecting sensitive regions. In addition, we plan to explore
more sophisticated inpainting schemes for background regions
that seek to replace the background at deployment time with
backgrounds from the VLA’s training data. Finally, we only
consider static environments in this work and plan to apply
BYOVLA in dynamic environments, e.g., with a mobile
robot or human behavior in the scene, where task-relevancy
may change during policy execution. Therein, we expect that
running the entire pipeline of BYOVLA at every time-step
will offer advantages not capitalized on here.

Overall, we believe that run-time interventions — as a
form of test-time compute — represent an underexplored
avenue for significantly improving the base capabilities of
VLAs without additional training, and we hope that the work
presented here spurs further research in this area.

REFERENCES

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “RT-1:
Robotics transformer for real-world control at scale,” in Proceedings
of Robotics: Science and Systems (RSS), 2023.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “RT-2: Vision-
language-action models transfer web knowledge to robotic control,” in
Proceedings of the Conference on Robot Learning (CoRL), 2023.

[3] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, P. Sanketi,
Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine, “Octo: An open-
source generalist robot policy,” in Proceedings of Robotics: Science
and Systems (RSS), 2024.

[4] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,
A. Khazatsky, A. Rai, A. Singh, A. Brohan et al., “Open x-embodiment:
Robotic learning datasets and rt-x models,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2024.

[5] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi et al., “Openvla: An open-
source vision-language-action model,” arXiv preprint arXiv:2406.09246,
2024.

[6] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-Cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of IEEE International
Conference on Computer Vision (ICCV), 2017.

[7] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[8] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i
say: Grounding language in robotic affordances,” in Proceedings of
Conference on robot learning (CoRL), 2023.

[9] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karam-
cheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, K. Ellis et al., “Droid:
A large-scale in-the-wild robot manipulation dataset,” in Proceedings
of Robotics: Science and Systems (RSS), 2024.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

[11] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Re-
inforcement learning with augmented data,” Proceedings of Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[12] Z. Yuan, T. Wei, S. Cheng, G. Zhang, Y. Chen, and H. Xu, “Learn-
ing to manipulate anywhere: A visual generalizable framework for
reinforcement learning,” arXiv preprint arXiv:2407.15815, 2024.

[13] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,
C. Tan, J. Peralta, B. Ichter et al., “Scaling robot learning with
semantically imagined experience,” in Proceedings of Robotics: Science
and Systems (RSS), 2023.

[14] L. Y. Chen, C. Xu, K. Dharmarajan, Z. Irshad, R. Cheng, K. Keutzer,
M. Tomizuka, Q. Vuong, and K. Goldberg, “Rovi-aug: Robot and
viewpoint augmentation for cross-embodiment robot learning,” arXiv
preprint arXiv:2409.03403, 2024.

[15] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and
V. Kumar, “CACTI: A framework for scalable multi-task multi-scene
visual imitation learning,” arXiv preprint arXiv:2212.05711, 2022.

[16] B. Grooten, T. Tomilin, G. Vasan, M. E. Taylor, A. R. Mahmood,
M. Fang, M. Pechenizkiy, and D. C. Mocanu, “Madi: Learning to mask
distractions for generalization in visual deep reinforcement learning,”
in Proceedings of International Foundation for Autonomous Agents
and Multiagent Systems (AAMAS), 2024.

[17] M. Riedmiller, T. Hertweck, and R. Hafner, “Less is more–the
dispatcher/executor principle for multi-task reinforcement learning,”
arXiv preprint arXiv:2312.09120, 2023.

[18] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong,
P. Wohlhart, S. Kirmani, B. Zitkovich, F. Xia et al., “Open-world object
manipulation using pre-trained vision-language models,” in Proceedings
of the Conference on Robot Learning (CoRL), 2023.

[19] Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu, “Learning generalizable
manipulation policies with object-centric 3d representations,” in
Proceedings of the Conference on Robot Learning (CoRL), 2023.

[20] J. Yang, W. Tan, C. Jin, K. Yao, B. Liu, J. Fu, R. Song, G. Wu, and
L. Wang, “Transferring foundation models for generalizable robotic
manipulation,” arXiv e-prints, pp. arXiv–2306, 2023.

[21] Y. Miyashita, D. Gahtidis, C. La, J. Rabinowicz, and J. Leitner, “Roso:
Improving robotic policy inference via synthetic observations,” arXiv
preprint arXiv:2311.16680, 2023.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings
of Advances in Neural Information Processing Systems (NIPS), 2017.

[23] D. Bahdanau, “Neural machine translation by jointly learning to align
and translate,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2014.

[24] Y. Tang, D. Nguyen, and D. Ha, “Neuroevolution of self-interpretable
agents,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2020.

[25] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automation
Letters, 2022.

[26] V. Pacelli and A. Majumdar, “Learning task-driven control policies
via information bottlenecks,” in Proceedings of Robotics: Science and
Systems (RSS), 2020.

[27] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and
K. Hofmann, “Generalization in reinforcement learning with selective
noise injection and information bottleneck,” Proceedings of Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[28] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine,
“Learning invariant representations for reinforcement learning without
reconstruction,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[29] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare,
“Contrastive behavioral similarity embeddings for generalization in
reinforcement learning,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proceedings of Advances in Neural Information
Processing Systems (NIPS), 2017.

[31] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016.

[32] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg,
“Smoothgrad: removing noise by adding noise,” arXiv preprint
arXiv:1706.03825, 2017.

[33] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks
is fragile,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2019.

[34] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt,
S. Dähne, D. Erhan, and B. Kim, “The (un) reliability of saliency
methods,” Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, 2019.

[35] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[36] H. Liu, C. Li, Y. Li, and Y. J. Lee, “Improved baselines with visual
instruction tuning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[37] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr,
R. Rädle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K. V. Alwala,
N. Carion, C.-Y. Wu, R. Girshick, P. Dollár, and C. Feichtenhofer,
“Sam 2: Segment anything in images and videos,” 2024. [Online].
Available: https://arxiv.org/abs/2408.00714

[38] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang,
H. Su, J. Zhu et al., “Grounding dino: Marrying dino with grounded pre-
training for open-set object detection,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2024.

[39] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang,
Y. Chen, F. Yan, Z. Zeng, H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang,
and L. Zhang, “Grounded sam: Assembling open-world models for
diverse visual tasks,” 2024.

[40] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” in Proceedings of IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

[41] T. Yu, R. Feng, R. Feng, J. Liu, X. Jin, W. Zeng, and Z. Chen, “Inpaint

https://arxiv.org/abs/2408.00714

anything: Segment anything meets image inpainting,” arXiv preprint
arXiv:2304.06790, 2023.

[42] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-
Estruch, A. W. He, V. Myers, M. J. Kim, M. Du et al., “Bridgedata v2:
A dataset for robot learning at scale,” in Proceedings of Conference
on Robot Learning (CoRL), 2023.

[43] A. Templeton, T. Conerly, J. Marcus, J. Lindsey, T. Bricken, B. Chen,
A. Pearce, C. Citro, E. Ameisen, A. Jones, H. Cunningham, N. L.
Turner, C. McDougall, M. MacDiarmid, C. D. Freeman, T. R. Sumers,
E. Rees, J. Batson, A. Jermyn, S. Carter, C. Olah, and T. Henighan,
“Scaling monosemanticity: Extracting interpretable features from claude
3 sonnet,” Transformer Circuits Thread, 2024. [Online]. Available: https:
//transformer-circuits.pub/2024/scaling-monosemanticity/index.html

[44] L. Gao, T. D. la Tour, H. Tillman, G. Goh, R. Troll, A. Radford,
I. Sutskever, J. Leike, and J. Wu, “Scaling and evaluating sparse
autoencoders,” arXiv preprint arXiv:2406.04093, 2024.

[45] N. Elhage, T. Hume, C. Olsson, N. Nanda, T. Henighan, S. Johnston,
S. ElShowk, N. Joseph, N. DasSarma, B. Mann, D. Hernandez,
A. Askell, K. Ndousse, A. Jones, D. Drain, A. Chen, Y. Bai, D. Ganguli,
L. Lovitt, Z. Hatfield-Dodds, J. Kernion, T. Conerly, S. Kravec,
S. Fort, S. Kadavath, J. Jacobson, E. Tran-Johnson, J. Kaplan, J. Clark,
T. Brown, S. McCandlish, D. Amodei, and C. Olah, “Softmax
linear units,” Transformer Circuits Thread, 2022, https://transformer-
circuits.pub/2022/solu/index.html.

[46] H. Chefer, S. Gur, and L. Wolf, “Transformer interpretability beyond
attention visualization,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[47] A. J. Hancock, A. Z. Ren, and A. Majumdar, “Run-time observation
interventions make vision-language-action models more visually ro-
bust,” Extended Version, 2024, https://aasherh.github.io/data/Hancock_
Visually_Robust_VLAs.pdf.

[48] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification,” Foundations
and Trends in Machine Learning, 2023.

[49] G. Shafer and V. Vovk, “A tutorial on conformal prediction.” Journal
of Machine Learning Research (JMLR), 2008.

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://aasherh.github.io/data/Hancock_Visually_Robust_VLAs.pdf
https://aasherh.github.io/data/Hancock_Visually_Robust_VLAs.pdf

	I Introduction
	II Related Work
	II-A Vision-Language-Action (VLA) models
	II-B Improving policy robustness to visual distractors
	II-C Determining the task-relevant elements in the scene

	III Methodology
	III-A Problem formulation
	III-B Bring Your Own VLA

	IV Experiments
	IV-A Evaluation with Octo-Base
	IV-B Evaluation with OpenVLA

	V Conclusion and discussions
	References

